ML Anthology
Authors
Search
About
Martens, James
24 publications
CoLLAs
2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
,
Zeyu Zheng
,
Khimya Khetarpal
,
Hado van Hasselt
,
Razvan Pascanu
,
James Martens
,
Will Dabney
NeurIPS
2024
Normalization and Effective Learning Rates in Reinforcement Learning
Clare Lyle
,
Zeyu Zheng
,
Khimya Khetarpal
,
James Martens
,
Hado van Hasselt
,
Razvan Pascanu
,
Will Dabney
ICLR
2023
Deep Transformers Without Shortcuts: Modifying Self-Attention for Faithful Signal Propagation
Bobby He
,
James Martens
,
Guodong Zhang
,
Aleksandar Botev
,
Andrew Brock
,
Samuel L Smith
,
Yee Whye Teh
ICLR
2023
Pre-Training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
,
Michael Schaarschmidt
,
James Martens
,
Hyunjik Kim
,
Yee Whye Teh
,
Alvaro Sanchez-Gonzalez
,
Peter Battaglia
,
Razvan Pascanu
,
Jonathan Godwin
ICLR
2022
Deep Learning Without Shortcuts: Shaping the Kernel with Tailored Rectifiers
Guodong Zhang
,
Aleksandar Botev
,
James Martens
NeurIPSW
2022
Pre-Training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
,
Michael Schaarschmidt
,
James Martens
,
Hyunjik Kim
,
Yee Whye Teh
,
Alvaro Sanchez-Gonzalez
,
Peter Battaglia
,
Razvan Pascanu
,
Jonathan Godwin
JMLR
2020
New Insights and Perspectives on the Natural Gradient Method
James Martens
NeurIPS
2019
Adversarial Robustness Through Local Linearization
Chongli Qin
,
James Martens
,
Sven Gowal
,
Dilip Krishnan
,
Krishnamurthy Dvijotham
,
Alhussein Fawzi
,
Soham De
,
Robert Stanforth
,
Pushmeet Kohli
JMLR
2019
Differentiable Game Mechanics
Alistair Letcher
,
David Balduzzi
,
Sébastien Racanière
,
James Martens
,
Jakob Foerster
,
Karl Tuyls
,
Thore Graepel
NeurIPS
2019
Fast Convergence of Natural Gradient Descent for Over-Parameterized Neural Networks
Guodong Zhang
,
James Martens
,
Roger B Grosse
NeurIPS
2019
Which Algorithmic Choices Matter at Which Batch Sizes? Insights from a Noisy Quadratic Model
Guodong Zhang
,
Lala Li
,
Zachary Nado
,
James Martens
,
Sushant Sachdeva
,
George Dahl
,
Chris Shallue
,
Roger B Grosse
ICLR
2018
Kronecker-Factored Curvature Approximations for Recurrent Neural Networks
James Martens
,
Jimmy Ba
,
Matt Johnson
ICML
2018
The Mechanics of N-Player Differentiable Games
David Balduzzi
,
Sebastien Racaniere
,
James Martens
,
Jakob Foerster
,
Karl Tuyls
,
Thore Graepel
ICLR
2017
Distributed Second-Order Optimization Using Kronecker-Factored Approximations
Jimmy Ba
,
Roger B. Grosse
,
James Martens
ICML
2016
A Kronecker-Factored Approximate Fisher Matrix for Convolution Layers
Roger Grosse
,
James Martens
ICML
2015
Optimizing Neural Networks with Kronecker-Factored Approximate Curvature
James Martens
,
Roger Grosse
ICML
2013
On the Importance of Initialization and Momentum in Deep Learning
Ilya Sutskever
,
James Martens
,
George Dahl
,
Geoffrey Hinton
NeurIPS
2013
On the Representational Efficiency of Restricted Boltzmann Machines
James Martens
,
Arkadev Chattopadhya
,
Toni Pitassi
,
Richard Zemel
ICML
2012
Estimating the Hessian by Back-Propagating Curvature
James Martens
,
Ilya Sutskever
,
Kevin Swersky
ICML
2011
Generating Text with Recurrent Neural Networks
Ilya Sutskever
,
James Martens
,
Geoffrey E. Hinton
ICML
2011
Learning Recurrent Neural Networks with Hessian-Free Optimization
James Martens
,
Ilya Sutskever
ICML
2010
Deep Learning via Hessian-Free Optimization
James Martens
ICML
2010
Learning the Linear Dynamical System with ASOS
James Martens
AISTATS
2010
Parallelizable Sampling of Markov Random Fields
James Martens
,
Ilya Sutskever