McIlraith, Sheila A.

58 publications

NeurIPS 2025 Better Training Data Attribution via Better Inverse Hessian-Vector Products Andrew Wang, Elisa Nguyen, Runshi Yang, Juhan Bae, Sheila A. McIlraith, Roger Baker Grosse
NeurIPS 2025 Evaluating Generalization Capabilities of LLM-Based Agents in Mixed-Motive Scenarios Using Concordia Chandler Smith, Marwa Abdulhai, Manfred Diaz, Marko Tesic, Rakshit Trivedi, Sasha Vezhnevets, Lewis Hammond, Jesse Clifton, Minsuk Chang, Edgar A. Duéñez-Guzmán, John P Agapiou, Jayd Matyas, Danny Karmon, Beining Zhang, Jim Dilkes, Akash Kundu, Jord Nguyen, Emanuel Tewolde, Jebish Purbey, Ram Mohan Rao Kadiyala, Siddhant Gupta, Aliaksei Korshuk, Buyantuev Alexander, Ilya Makarov, Gang Zhao, Rolando Fernandez, Zhihan Wang, Caroline Wang, Jiaxun Cui, Lingyun Xiao, Di Yang Shi, Yoonchang Sung, Arrasy Rahman, Peter Stone, Yipeng Kang, Hyeonggeun Yun, Ananya Ananya, Taehun Cha, Zhiqiang Wu, Elizaveta Tennant, Olivia Macmillan-Scott, Marta Emili García Segura, Diana Riazi, Fuyang Cui, Sriram Ganapathi Subramanian, Toryn Q. Klassen, Nico Schiavone, Mogtaba Alim, Sheila A. McIlraith, Manuel Sebastian Rios Beltran, Oswaldo Peña, Carlos Saith Rodriguez Rojas, Manuela Chacon-Chamorro, Ruben Manrique, Luis Felipe Giraldo, Nicanor Quijano, Yiding Wang, Yuxuan Chen, Fangwei Zhong, Mengmeng Wang, Wenming Tu, Zhaowei Zhang, Ziang Chen, Zixia Jia, Xue Feng, Zilong Zheng, Chichen Lin, Weijian Fan, Chenao Liu, Sneheel Sarangi, Ziyan Wang, Shuqing Shi, Yali Du, Avinaash Anand Kulandaivel, Yang Liu, Wu Ruiyang, Chetan Talele, 陆孙嘉, Gema Parreño Piqueras, Shamika Dhuri, Bain McHale, Tim Baarslag, Dylan Hadfield-Menell, Natasha Jaques, Jose Hernandez-Orallo, Joel Z Leibo
NeurIPS 2025 Ground-Compose-Reinforce: Grounding Language in Agentic Behaviours Using Limited Data Andrew C Li, Toryn Q. Klassen, Andrew Wang, Parand A. Alamdari, Sheila A. McIlraith
ICLRW 2025 Multi-Agent Verification: Scaling Test-Time Compute with Multiple Verifiers (Abridged) Shalev Lifshitz, Sheila A. McIlraith, Yilun Du
JAIR 2025 Optimal Decision Trees for Interpretable and Constrained Clustering Pouya Shati, Yuliang Song, Eldan Cohen, Sheila A. McIlraith
NeurIPSW 2024 Being Considerate as a Pathway Towards Pluralistic Alignment for Agentic AI Parand A. Alamdari, Toryn Q. Klassen, Rodrigo Toro Icarte, Sheila A. McIlraith
AAAI 2024 PRP Rebooted: Advancing the State of the Art in FOND Planning Christian Muise, Sheila A. McIlraith, J. Christopher Beck
NeurIPSW 2024 Pluralistic Alignment over Time Toryn Q. Klassen, Parand A. Alamdari, Sheila A. McIlraith
ICML 2024 Remembering to Be Fair: Non-Markovian Fairness in Sequential Decision Making Parand A. Alamdari, Toryn Q. Klassen, Elliot Creager, Sheila A. Mcilraith
NeurIPS 2024 Reward Machines for Deep RL in Noisy and Uncertain Environments Andrew C. Li, Zizhao Chen, Toryn Q. Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, Sheila A. McIlraith
ICMLW 2023 A Generative Model for Text Control in Minecraft Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila A. McIlraith
ICMLW 2023 A Generative Model for Text Control in Minecraft (Abridged Version) Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila A. McIlraith
ICML 2023 Learning Belief Representations for Partially Observable Deep RL Andrew Wang, Andrew C Li, Toryn Q. Klassen, Rodrigo Toro Icarte, Sheila A. Mcilraith
IJCAI 2023 Optimal Decision Trees for Interpretable Clustering with Constraints Pouya Shati, Eldan Cohen, Sheila A. McIlraith
NeurIPSW 2023 STEVE-1: A Generative Model for Text-to-Behavior in Minecraft Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila A. McIlraith
NeurIPSW 2022 Epistemic Side Effects & Avoiding Them (Sometimes) Toryn Q. Klassen, Parand Alizadeh Alamdari, Sheila A. McIlraith
ICMLW 2022 Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks Andrew C Li, Pashootan Vaezipoor, Rodrigo Toro Icarte, Sheila A. McIlraith
NeurIPSW 2022 Noisy Symbolic Abstractions for Deep RL: A Case Study with Reward Machines Andrew C. Li, Zizhao Chen, Pashootan Vaezipoor, Toryn Q. Klassen, Rodrigo Toro Icarte, Sheila A. McIlraith
NeurIPSW 2022 Noisy Symbolic Abstractions for Deep RL: A Case Study with Reward Machines Andrew C Li, Zizhao Chen, Pashootan Vaezipoor, Toryn Q. Klassen, Rodrigo Toro Icarte, Sheila A. McIlraith
AAAI 2022 Planning to Avoid Side Effects Toryn Q. Klassen, Sheila A. McIlraith, Christian Muise, Jarvis Xu
NeurIPSW 2022 Return Augmentation Gives Supervised RL Temporal Compositionality Keiran Paster, Silviu Pitis, Sheila A. McIlraith, Jimmy Ba
NeurIPSW 2022 Return Augmentation Gives Supervised RL Temporal Compositionality Keiran Paster, Silviu Pitis, Sheila A. McIlraith, Jimmy Ba
JAIR 2022 Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, Sheila A. McIlraith
ICMLW 2022 You Can’t Count on Luck: Why Decision Transformers Fail in Stochastic Environments Keiran Paster, Sheila A. McIlraith, Jimmy Ba
NeurIPSW 2021 BLAST: Latent Dynamics Models from Bootstrapping Keiran Paster, Lev E McKinney, Sheila A. McIlraith, Jimmy Ba
AAAI 2021 Interpretable Sequence Classification via Discrete Optimization Maayan Shvo, Andrew C. Li, Rodrigo Toro Icarte, Sheila A. McIlraith
ICML 2021 LTL2Action: Generalizing LTL Instructions for Multi-Task RL Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, Sheila A. Mcilraith
ICLR 2021 Planning from Pixels Using Inverse Dynamics Models Keiran Paster, Sheila A. McIlraith, Jimmy Ba
IJCAI 2021 Type-WA*: Using Exploration in Bounded Suboptimal Planning Eldan Cohen, Richard Anthony Valenzano, Sheila A. McIlraith
AAAI 2020 Active Goal Recognition Maayan Shvo, Sheila A. McIlraith
AAAI 2019 Generalized Planning via Abstraction: Arbitrary Numbers of Objects León Illanes, Sheila A. McIlraith
IJCAI 2019 LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, Sheila A. McIlraith
IJCAI 2019 Strong Fully Observable Non-Deterministic Planning with LTL and LTLf Goals Alberto Camacho, Sheila A. McIlraith
IJCAI 2018 LTL Realizability via Safety and Reachability Games Alberto Camacho, Christian J. Muise, Jorge A. Baier, Sheila A. McIlraith
AAAI 2018 Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018 Sheila A. McIlraith, Kilian Q. Weinberger
IJCAI 2018 SynKit: LTL Synthesis as a Service Alberto Camacho, Christian J. Muise, Jorge A. Baier, Sheila A. McIlraith
AAAI 2017 Logical Filtering and Smoothing: State Estimation in Partially Observable Domains Brent Mombourquette, Christian J. Muise, Sheila A. McIlraith
AAAI 2017 Non-Deterministic Planning with Temporally Extended Goals: LTL over Finite and Infinite Traces Alberto Camacho, Eleni Triantafillou, Christian J. Muise, Jorge A. Baier, Sheila A. McIlraith
IJCAI 2017 Numeric Planning via Abstraction and Policy Guided Search Leon Illanes, Sheila A. McIlraith
JAIR 2016 Optimal Partial-Order Plan Relaxation via MaxSAT Christian J. Muise, J. Christopher Beck, Sheila A. McIlraith
AAAI 2015 Planning over Multi-Agent Epistemic States: A Classical Planning Approach Christian J. Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller, Adrian R. Pearce, Liz Sonenberg
AAAI 2014 Computing Contingent Plans via Fully Observable Non-Deterministic Planning Christian J. Muise, Vaishak Belle, Sheila A. McIlraith
AAAI 2014 Cost-Based Query Optimization via AI Planning Nathan Robinson, Sheila A. McIlraith, David Toman
AAAI 2013 Assumption-Based Planning: Generating Plans and Explanations Under Incomplete Knowledge Sammy Davis-Mendelow, Jorge A. Baier, Sheila A. McIlraith
IJCAI 2013 Flexible Execution of Partial Order Plans with Temporal Constraints Christian J. Muise, J. Christopher Beck, Sheila A. McIlraith
IJCAI 2011 Monitoring the Execution of Partial-Order Plans via Regression Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck
AAAI 2011 Preferred Explanations: Theory and Generation via Planning Shirin Sohrabi, Jorge A. Baier, Sheila A. McIlraith
UAI 2009 Generating Optimal Plans in Highly-Dynamic Domains Christian Fritz, Sheila A. McIlraith
IJCAI 2009 HTN Planning with Preferences Shirin Sohrabi, Jorge A. Baier, Sheila A. McIlraith
AAAI 2008 Beyond Classical Planning: Procedural Control Knowledge and Preferences in State-of-the-Art Planners Jorge A. Baier, Christian Fritz, Meghyn Bienvenu, Sheila A. McIlraith
IJCAI 2007 A Heuristic Search Approach to Planning with Temporally Extended Preferences Jorge A. Baier, Fahiem Bacchus, Sheila A. McIlraith
AAAI 2007 Using Expectation Maximization to Find Likely Assignments for Solving CSP's Eric I. Hsu, Matthew Kitching, Fahiem Bacchus, Sheila A. McIlraith
AAAI 2006 Planning with First-Order Temporally Extended Goals Using Heuristic Search Jorge A. Baier, Sheila A. McIlraith
IJCAI 2003 Practical Partition-Based Theorem Proving for Large Knowledge Bases Bill MacCartney, Sheila A. McIlraith, Eyal Amir, Tomás E. Uribe
UAI 2002 Monitoring a Complez Physical System Using a Hybrid Dynamic Bayes Net Uri Lerner, Brooks Moses, Maricia Scott, Sheila A. McIlraith, Daphne Koller
IJCAI 2001 Theorem Proving with Structured Theories Sheila A. McIlraith, Eyal Amir
AAAI 2000 What Sensing Tells Us: Towards a Formal Theory of Testing for Dynamical Systems Sheila A. McIlraith, Richard B. Scherl
AAAI 1997 Representing Actions and State Constraints in Model-Based Diagnosis Sheila A. McIlraith