ML Anthology
Authors
Search
About
McMahan, Brendan
17 publications
NeurIPS
2021
Differentially Private Learning with Adaptive Clipping
Galen Andrew
,
Om Thakkar
,
Brendan McMahan
,
Swaroop Ramaswamy
ICML
2021
Practical and Private (Deep) Learning Without Sampling or Shuffling
Peter Kairouz
,
Brendan Mcmahan
,
Shuang Song
,
Om Thakkar
,
Abhradeep Thakurta
,
Zheng Xu
AISTATS
2020
Federated Heavy Hitters Discovery with Differential Privacy
Wennan Zhu
,
Peter Kairouz
,
Brendan McMahan
,
Haicheng Sun
,
Wei Li
ICML
2020
Is Local SGD Better than Minibatch SGD?
Blake Woodworth
,
Kumar Kshitij Patel
,
Sebastian Stich
,
Zhen Dai
,
Brian Bullins
,
Brendan Mcmahan
,
Ohad Shamir
,
Nathan Srebro
NeurIPS
2020
Privacy Amplification via Random Check-Ins
Borja Balle
,
Peter Kairouz
,
Brendan McMahan
,
Om Thakkar
,
Abhradeep Guha Thakurta
ICML
2019
Semi-Cyclic Stochastic Gradient Descent
Hubert Eichner
,
Tomer Koren
,
Brendan Mcmahan
,
Nathan Srebro
,
Kunal Talwar
NeurIPS
2018
Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization
Blake E Woodworth
,
Jialei Wang
,
Adam Smith
,
Brendan McMahan
,
Nati Srebro
NeurIPS
2018
cpSGD: Communication-Efficient and Differentially-Private Distributed SGD
Naman Agarwal
,
Ananda Theertha Suresh
,
Felix Xinnan X Yu
,
Sanjiv Kumar
,
Brendan McMahan
AISTATS
2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
Brendan McMahan
,
Eider Moore
,
Daniel Ramage
,
Seth Hampson
,
Blaise Agüera y Arcas
NeurIPS
2014
Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning
Brendan McMahan
,
Matthew Streeter
NeurIPS
2013
Estimation, Optimization, and Parallelism When Data Is Sparse
John Duchi
,
Michael I Jordan
,
Brendan McMahan
ICML
2013
Large-Scale Learning with Less RAM via Randomization
Daniel Golovin
,
D. Sculley
,
Brendan McMahan
,
Michael Young
NeurIPS
2013
Minimax Optimal Algorithms for Unconstrained Linear Optimization
Brendan McMahan
,
Jacob Abernethy
NeurIPS
2012
No-Regret Algorithms for Unconstrained Online Convex Optimization
Brendan Mcmahan
,
Matthew Streeter
AISTATS
2011
Discussion of “Contextual Bandit Algorithms with Supervised Learning Guarantees”
Brendan McMahan
AISTATS
2011
Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization
Brendan McMahan
NeurIPS
2007
Selecting Observations Against Adversarial Objectives
Andreas Krause
,
Brendan Mcmahan
,
Carlos Guestrin
,
Anupam Gupta