Meeds, Edward

12 publications

NeurIPS 2025 Gradient Multi-Normalization for Efficient LLM Training Meyer Scetbon, Chao Ma, Wenbo Gong, Edward Meeds
ICML 2025 SWAN: SGD with Normalization and Whitening Enables Stateless LLM Training Chao Ma, Wenbo Gong, Meyer Scetbon, Edward Meeds
MLHC 2023 AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires Melanie F. Pradier, Niranjani Prasad, Paidamoyo Chapfuwa, Sahra Ghalebikesabi, Maximilian Ilse, Steven Woodhouse, Rebecca Elyanow, Javier Zazo, Javier Gonzalez Hernandez, Julia Greissl, Edward Meeds
UAI 2022 Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations Paidamoyo Chapfuwa, Sherri Rose, Lawrence Carin, Edward Meeds, Ricardo Henao
ICLR 2019 Deterministic Variational Inference for Robust Bayesian Neural Networks Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, José Miguel Hernández-Lobato, Alexander L. Gaunt
ICML 2019 Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems Geoffrey Roeder, Paul Grant, Andrew Phillips, Neil Dalchau, Edward Meeds
ICLR 2017 Soft Weight-Sharing for Neural Network Compression Karen Ullrich, Edward Meeds, Max Welling
UAI 2015 Hamiltonian ABC Edward Meeds, Robert Leenders, Max Welling
UAI 2014 GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation Edward Meeds, Max Welling
CVPR 2008 Learning Stick-Figure Models Using Nonparametric Bayesian Priors over Trees Edward Meeds, David A. Ross, Richard S. Zemel, Sam T. Roweis
NeurIPS 2006 Modeling Dyadic Data with Binary Latent Factors Edward Meeds, Zoubin Ghahramani, Radford M. Neal, Sam T. Roweis
NeurIPS 2005 An Alternative Infinite Mixture of Gaussian Process Experts Edward Meeds, Simon Osindero