Min, Hancheng

14 publications

TMLR 2025 A Local Polyak-Łojasiewicz and Descent Lemma of Gradient Descent for Overparametrized Linear Models Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, Rene Vidal
CVPR 2025 Concept Lancet: Image Editing with Compositional Representation Transplant Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Hancheng Min, Chris Callison-Burch, Rene Vidal
NeurIPS 2025 Convergence Rates for Gradient Descent on the Edge of Stability for Overparametrised Least Squares Lachlan Ewen MacDonald, Hancheng Min, Leandro Palma, Salma Tarmoun, Ziqing Xu, Rene Vidal
ICML 2025 Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs Hancheng Min, Rene Vidal
NeurIPS 2025 Neural Collapse Under Gradient Flow on Shallow ReLU Networks for Orthogonally Separable Data Hancheng Min, Zhihui Zhu, Rene Vidal
AISTATS 2025 Understanding the Learning Dynamics of LoRA: A Gradient Flow Perspective on Low-Rank Adaptation in Matrix Factorization Ziqing Xu, Hancheng Min, Lachlan Ewen MacDonald, Jinqi Luo, Salma Tarmoun, Enrique Mallada, Rene Vidal
ICCV 2025 Voyaging into Perpetual Dynamic Scenes from a Single View Fengrui Tian, Tianjiao Ding, Jinqi Luo, Hancheng Min, Rene Vidal
ICML 2024 Can Implicit Bias Imply Adversarial Robustness? Hancheng Min, Rene Vidal
ICLR 2024 Early Neuron Alignment in Two-Layer ReLU Networks with Small Initialization Hancheng Min, Enrique Mallada, Rene Vidal
L4DC 2023 Learning Coherent Clusters in Weakly-Connected Network Systems Hancheng Min, Enrique Mallada
AISTATS 2023 Linear Convergence of Gradient Descent for Finite Width Over-Parametrized Linear Networks with General Initialization Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, Rene Vidal
ICML 2023 On the Convergence of Gradient Flow on Multi-Layer Linear Models Hancheng Min, Rene Vidal, Enrique Mallada
L4DC 2022 Reinforcement Learning with Almost Sure Constraints Agustin Castellano, Hancheng Min, Enrique Mallada, Juan Andrés Bazerque
ICML 2021 On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks Hancheng Min, Salma Tarmoun, Rene Vidal, Enrique Mallada