ML Anthology
Authors
Search
About
Mineiro, Paul
32 publications
NeurIPS
2024
Active, Anytime-Valid Risk Controlling Prediction Sets
Ziyu Xu
,
Nikos Karampatziakis
,
Paul Mineiro
NeurIPS
2024
Aligning LLM Agents by Learning Latent Preference from User Edits
Ge Gao
,
Alexey Taymanov
,
Eduardo Salinas
,
Paul Mineiro
,
Dipendra Misra
ICML
2024
Efficient Contextual Bandits with Uninformed Feedback Graphs
Mengxiao Zhang
,
Yuheng Zhang
,
Haipeng Luo
,
Paul Mineiro
NeurIPSW
2024
Flow-DPO: Improving LLM Mathematical Reasoning Through Online Multi-Agent Learning
Yihe Deng
,
Paul Mineiro
NeurIPS
2024
Provably Efficient Interactive-Grounded Learning with Personalized Reward
Mengxiao Zhang
,
Yuheng Zhang
,
Haipeng Luo
,
Paul Mineiro
ICML
2023
Infinite Action Contextual Bandits with Reusable Data Exhaust
Mark Rucker
,
Yinglun Zhu
,
Paul Mineiro
ICLR
2023
Personalized Reward Learning with Interaction-Grounded Learning (IGL)
Jessica Maghakian
,
Paul Mineiro
,
Kishan Panaganti
,
Mark Rucker
,
Akanksha Saran
,
Cheng Tan
NeurIPS
2023
Practical Contextual Bandits with Feedback Graphs
Mengxiao Zhang
,
Yuheng Zhang
,
Olga Vrousgou
,
Haipeng Luo
,
Paul Mineiro
NeurIPS
2023
Time-Uniform Confidence Bands for the CDF Under Nonstationarity
Paul Mineiro
,
Steven Howard
ICML
2022
Contextual Bandits with Large Action Spaces: Made Practical
Yinglun Zhu
,
Dylan J Foster
,
John Langford
,
Paul Mineiro
ICML
2022
Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces
Yinglun Zhu
,
Paul Mineiro
NeurIPS
2022
Interaction-Grounded Learning with Action-Inclusive Feedback
Tengyang Xie
,
Akanksha Saran
,
Dylan J Foster
,
Lekan Molu
,
Ida Momennejad
,
Nan Jiang
,
Paul Mineiro
,
John Langford
NeurIPSW
2022
Towards Data-Driven Offline Simulations for Online Reinforcement Learning
Shengpu Tang
,
Felipe Vieira Frujeri
,
Dipendra Misra
,
Alex Lamb
,
John Langford
,
Paul Mineiro
,
Sebastian Kochman
NeurIPS
2021
Bellman-Consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie
,
Ching-An Cheng
,
Nan Jiang
,
Paul Mineiro
,
Alekh Agarwal
ICML
2021
ChaCha for Online AutoML
Qingyun Wu
,
Chi Wang
,
John Langford
,
Paul Mineiro
,
Marco Rossi
ICML
2021
Interaction-Grounded Learning
Tengyang Xie
,
John Langford
,
Paul Mineiro
,
Ida Momennejad
ICML
2021
Off-Policy Confidence Sequences
Nikos Karampatziakis
,
Paul Mineiro
,
Aaditya Ramdas
NeurIPS
2020
Empirical Likelihood for Contextual Bandits
Nikos Karampatziakis
,
John Langford
,
Paul Mineiro
ICML
2019
Contextual Memory Trees
Wen Sun
,
Alina Beygelzimer
,
Hal Daumé Iii
,
John Langford
,
Paul Mineiro
ICMLW
2019
Lessons from Contextual Bandit Learning in a Customer Support Bot
Nikos Karampatziakis
,
Sebastian Kochman
,
Jade Huang
,
Paul Mineiro
,
Kathy Osborne
,
Weizhu Chen
ICML
2017
Logarithmic Time One-Against-Some
Hal Daumé
,
Nikos Karampatziakis
,
John Langford
,
Paul Mineiro
ICLR
2015
Fast Label Embeddings for Extremely Large Output Spaces
Paul Mineiro
,
Nikos Karampatziakis
ECML-PKDD
2015
Fast Label Embeddings via Randomized Linear Algebra
Paul Mineiro
,
Nikos Karampatziakis
ICML
2014
Discriminative Features via Generalized Eigenvectors
Nikos Karampatziakis
,
Paul Mineiro
ICML
2013
Loss-Proportional Subsampling for Subsequent ERM
Paul Mineiro
,
Nikos Karampatziakis
UAI
2013
Normalized Online Learning
Stéphane Ross
,
Paul Mineiro
,
John Langford
NeCo
2002
A Monte Carlo EM Approach for Partially Observable Diffusion Processes: Theory and Applications to Neural Networks
Javier R. Movellan
,
Paul Mineiro
,
Ruth J. Williams
NeurIPS
2000
Partially Observable SDE Models for Image Sequence Recognition Tasks
Javier R. Movellan
,
Paul Mineiro
,
Ruth J. Williams
NeCo
1998
Analysis of Direction Selectivity Arising from Recurrent Cortical Interactions
Paul Mineiro
,
David Zipser
MLJ
1998
Robust Sensor Fusion: Analysis and Application to Audio Visual Speech Recognition
Javier R. Movellan
,
Paul Mineiro
NeurIPS
1997
Bayesian Robustification for Audio Visual Fusion
Javier R. Movellan
,
Paul Mineiro
NeurIPS
1997
Learning Path Distributions Using Nonequilibrium Diffusion Networks
Paul Mineiro
,
Javier R. Movellan
,
Ruth J. Williams