ML Anthology
Authors
Search
About
Mishchenko, Konstantin
22 publications
TMLR
2025
Partially Personalized Federated Learning: Breaking the Curse of Data Heterogeneity
Konstantin Mishchenko
,
Rustem Islamov
,
Eduard Gorbunov
,
Samuel Horváth
NeurIPS
2024
Adaptive Proximal Gradient Method for Convex Optimization
Yura Malitsky
,
Konstantin Mishchenko
ICML
2024
Prodigy: An Expeditiously Adaptive Parameter-Free Learner
Konstantin Mishchenko
,
Aaron Defazio
NeurIPS
2024
The Road Less Scheduled
Aaron Defazio
,
Xingyu Yang
,
Harsh Mehta
,
Konstantin Mishchenko
,
Ahmed Khaled
,
Ashok Cutkosky
ICMLW
2023
Convergence of First-Order Algorithms for Meta-Learning with Moreau Envelopes
Konstantin Mishchenko
,
Slavomir Hanzely
,
Peter Richtárik
NeurIPS
2023
DoWG Unleashed: An Efficient Universal Parameter-Free Gradient Descent Method
Ahmed Khaled
,
Konstantin Mishchenko
,
Chi Jin
ICML
2023
Learning-Rate-Free Learning by D-Adaptation
Aaron Defazio
,
Konstantin Mishchenko
NeurIPSW
2023
Noise Injection Irons Out Local Minima and Saddle Points
Konstantin Mishchenko
,
Sebastian U Stich
ICML
2023
Two Losses Are Better than One: Faster Optimization Using a Cheaper Proxy
Blake Woodworth
,
Konstantin Mishchenko
,
Francis Bach
NeurIPS
2022
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
Konstantin Mishchenko
,
Francis R. Bach
,
Mathieu Even
,
Blake E Woodworth
ICLR
2022
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
,
Bokun Wang
,
Dmitry Kovalev
,
Peter Richtárik
NeurIPSW
2022
Parameter Free Dual Averaging: Optimizing Lipschitz Functions in a Single Pass
Aaron Defazio
,
Konstantin Mishchenko
ICML
2022
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
Konstantin Mishchenko
,
Grigory Malinovsky
,
Sebastian Stich
,
Peter Richtarik
ICML
2022
Proximal and Federated Random Reshuffling
Konstantin Mishchenko
,
Ahmed Khaled
,
Peter Richtarik
UAI
2020
99% of Worker-Master Communication in Distributed Optimization Is Not Needed
Konstantin Mishchenko
,
Filip Hanzely
,
Peter Richtarik
ICML
2020
Adaptive Gradient Descent Without Descent
Yura Malitsky
,
Konstantin Mishchenko
AISTATS
2020
DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate
Saeed Soori
,
Konstantin Mishchenko
,
Aryan Mokhtari
,
Maryam Mehri Dehnavi
,
Mert Gurbuzbalaban
NeurIPS
2020
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
,
Ahmed Khaled
,
Peter Richtarik
AISTATS
2020
Revisiting Stochastic Extragradient
Konstantin Mishchenko
,
Dmitry Kovalev
,
Egor Shulgin
,
Peter Richtarik
,
Yura Malitsky
AISTATS
2020
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
,
Konstantin Mishchenko
,
Peter Richtarik
ICML
2018
A Delay-Tolerant Proximal-Gradient Algorithm for Distributed Learning
Konstantin Mishchenko
,
Franck Iutzeler
,
Jérôme Malick
,
Massih-Reza Amini
NeurIPS
2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
,
Konstantin Mishchenko
,
Peter Richtarik