Mnih, Andriy

34 publications

NeurIPS 2024 Schrodinger Bridge Flow for Unpaired Data Translation Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, Arnaud Doucet
ICML 2023 Compositional Score Modeling for Simulation-Based Inference Tomas Geffner, George Papamakarios, Andriy Mnih
NeurIPSW 2022 Score Modeling for Simulation-Based Inference Tomas Geffner, George Papamakarios, Andriy Mnih
NeurIPS 2021 Coupled Gradient Estimators for Discrete Latent Variables Zhe Dong, Andriy Mnih, George Tucker
ICML 2021 Generalized Doubly Reparameterized Gradient Estimators Matthias Bauer, Andriy Mnih
ICML 2021 The Lipschitz Constant of Self-Attention Hyunjik Kim, George Papamakarios, Andriy Mnih
NeurIPSW 2021 Unbiased Gradient Estimation with Balanced Assignments for Mixtures of Experts Wouter Kool, Chris J. Maddison, Andriy Mnih
NeurIPS 2020 DisARM: An Antithetic Gradient Estimator for Binary Latent Variables Zhe Dong, Andriy Mnih, George Tucker
JMLR 2020 Monte Carlo Gradient Estimation in Machine Learning Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih
AISTATS 2020 Sparse Orthogonal Variational Inference for Gaussian Processes Jiaxin Shi, Michalis Titsias, Andriy Mnih
ICLR 2019 Attentive Neural Processes Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh
AISTATS 2019 Resampled Priors for Variational Autoencoders Matthias Bauer, Andriy Mnih
ICML 2018 Disentangling by Factorising Hyunjik Kim, Andriy Mnih
NeurIPS 2018 Implicit Reparameterization Gradients Mikhail Figurnov, Shakir Mohamed, Andriy Mnih
NeurIPS 2017 Filtering Variational Objectives Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
ICLR 2017 Particle Value Functions Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Arnaud Doucet, Andriy Mnih, Yee Whye Teh
NeurIPS 2017 REBAR: Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, Jascha Sohl-Dickstein
ICLR 2017 REBAR: Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models George Tucker, Andriy Mnih, Chris J. Maddison, Jascha Sohl-Dickstein
ICLR 2017 The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables Chris J. Maddison, Andriy Mnih, Yee Whye Teh
NeurIPS 2017 Variational Memory Addressing in Generative Models Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende
ICLR 2016 MuProp: Unbiased Backpropagation for Stochastic Neural Networks Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih
ICML 2016 Variational Inference for Monte Carlo Objectives Andriy Mnih, Danilo Rezende
ICML 2014 Deep AutoRegressive Networks Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, Daan Wierstra
ICML 2014 Neural Variational Inference and Learning in Belief Networks Andriy Mnih, Karol Gregor
NeurIPS 2013 Learning Word Embeddings Efficiently with Noise-Contrastive Estimation Andriy Mnih, Koray Kavukcuoglu
ICML 2012 A Fast and Simple Algorithm for Training Neural Probabilistic Language Models Andriy Mnih, Yee Whye Teh
NeurIPS 2012 Learning Label Trees for Probabilistic Modelling of Implicit Feedback Andriy Mnih, Yee W. Teh
NeurIPS 2008 A Scalable Hierarchical Distributed Language Model Andriy Mnih, Geoffrey E. Hinton
ICML 2008 Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo Ruslan Salakhutdinov, Andriy Mnih
NeurIPS 2007 Probabilistic Matrix Factorization Andriy Mnih, Ruslan Salakhutdinov
ICML 2007 Restricted Boltzmann Machines for Collaborative Filtering Ruslan Salakhutdinov, Andriy Mnih, Geoffrey E. Hinton
ICML 2007 Three New Graphical Models for Statistical Language Modelling Andriy Mnih, Geoffrey E. Hinton
AISTATS 2007 Visualizing Similarity Data with a Mixture of Maps James Cook, Ilya Sutskever, Andriy Mnih, Geoffrey Hinton
NeurIPS 2003 Wormholes Improve Contrastive Divergence Max Welling, Andriy Mnih, Geoffrey E. Hinton