Mohamed, Shakir

24 publications

CVPR 2023 Understanding Deep Generative Models with Generalized Empirical Likelihoods Suman Ravuri, Mélanie Rey, Shakir Mohamed, Marc Peter Deisenroth
TMLR 2022 Iterative State Estimation in Non-Linear Dynamical Systems Using Approximate Expectation Propagation Sanket Kamthe, So Takao, Shakir Mohamed, Marc Peter Deisenroth
JMLR 2021 Normalizing Flows for Probabilistic Modeling and Inference George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
NeurIPSW 2020 A Case for New Neural Networks Smoothness Constraints Mihaela Rosca, Theophane Weber, Arthur Gretton, Shakir Mohamed
JMLR 2020 Monte Carlo Gradient Estimation in Machine Learning Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih
NeurIPS 2019 Training Language GANs from Scratch Cyprien de Masson d'Autume, Shakir Mohamed, Mihaela Rosca, Jack Rae
NeurIPS 2018 Implicit Reparameterization Gradients Mikhail Figurnov, Shakir Mohamed, Andriy Mnih
ICML 2018 Learning Implicit Generative Models with the Method of Learned Moments Suman Ravuri, Shakir Mohamed, Mihaela Rosca, Oriol Vinyals
ICLR 2018 Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow
ICLR 2017 Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, Alexander Lerchner
ICLR 2017 Recurrent Environment Simulators Silvia Chiappa, Sébastien Racanière, Daan Wierstra, Shakir Mohamed
NeurIPS 2016 Unsupervised Learning of 3D Structure from Images Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, Nicolas Heess
ICML 2015 Variational Inference with Normalizing Flows Danilo Rezende, Shakir Mohamed
NeurIPS 2015 Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning Shakir Mohamed, Danilo Jimenez Rezende
NeurIPS 2014 Semi-Supervised Learning with Deep Generative Models Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, Max Welling
ICML 2014 Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra
ICML 2013 Adaptive Hamiltonian and Riemann Manifold Monte Carlo Ziyu Wang, Shakir Mohamed, Nando Freitas
AISTATS 2012 A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models Mohammad Khan, Shakir Mohamed, Benjamin Marlin, Kevin Murphy
ICML 2012 Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning Shakir Mohamed, Katherine A. Heller, Zoubin Ghahramani
NeurIPS 2012 Expectation Propagation in Gaussian Process Dynamical Systems Marc Deisenroth, Shakir Mohamed
NeurIPS 2012 Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression Mohammad Emtiyaz Khan, Shakir Mohamed, Kevin P. Murphy
AISTATS 2012 On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models David Buchman, Mark Schmidt, Shakir Mohamed, David Poole, Nando De Freitas
NeurIPS 2009 Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process Finale Doshi-velez, Shakir Mohamed, Zoubin Ghahramani, David A. Knowles
NeurIPS 2008 Bayesian Exponential Family PCA Shakir Mohamed, Zoubin Ghahramani, Katherine A. Heller