Momchev, Nikola
5 publications
ICLR
2025
BOND: Aligning LLMs with Best-of-N Distillation
Pier Giuseppe Sessa, Robert Dadashi-Tazehozi, Leonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Rame, Bobak Shahriari, Sarah Perrin, Abram L. Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos Garea, Amélie Héliou, Aliaksei Severyn, Matthew Hoffman, Nikola Momchev, Olivier Bachem NeurIPS
2024
Imitating Language via Scalable Inverse Reinforcement Learning
Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jörg Bornschein, Sandy Huang, Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, Sarah Maria Elisabeth Bechtle, Jost Tobias Springenberg, Nikola Momchev, Olivier Bachem, Matthieu Geist, Martin Riedmiller ICML
2024
Nash Learning from Human Feedback
Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegel, Andrea Michi, Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J Mankowitz, Doina Precup, Bilal Piot ICML
2021
Hyperparameter Selection for Imitation Learning
Léonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Sabela Ramos, Nikola Momchev, Sertan Girgin, Raphael Marinier, Lukasz Stafiniak, Manu Orsini, Olivier Bachem, Matthieu Geist, Olivier Pietquin ICLR
2020
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, Olivier Bousquet