Mooij, Joris M.

44 publications

NeurIPS 2025 Conditional Forecasts and Proper Scoring Rules for Reliable and Accurate Performative Predictions Philip Boeken, Onno Zoeter, Joris M. Mooij
UAI 2024 Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence – Preface Negar Kiyavash, Joris M. Mooij
UAI 2023 Correcting for Selection Bias and Missing Response in Regression Using Privileged Information P Boeken, Noud Kroon, Mathijs Jong, Joris M. Mooij, Onno Zoeter
UAI 2023 Establishing Markov Equivalence in Cyclic Directed Graphs Tom Claassen, Joris M. Mooij
UAI 2022 Robustness of Model Predictions Under Extension Tineke Blom, Joris M. Mooij
UAI 2021 A Bayesian Nonparametric Conditional Two-Sample Test with an Application to Local Causal Discovery Philip A. Boeken, Joris M. Mooij
UAI 2021 A Weaker Faithfulness Assumption Based on Triple Interactions Alexander Marx, Arthur Gretton, Joris M. Mooij
JMLR 2021 Conditional Independences and Causal Relations Implied by Sets of Equations Tineke Blom, Mirthe M. van Diepen, Joris M. Mooij
UAI 2020 Constraint-Based Causal Discovery Using Partial Ancestral Graphs in the Presence of Cycles Joris M. Mooij, Tom Claassen
JMLR 2020 Joint Causal Inference from Multiple Contexts Joris M. Mooij, Sara Magliacane, Tom Claassen
UAI 2019 Beyond Structural Causal Models: Causal Constraints Models Tineke Blom, Stephan Bongers, Joris M. Mooij
UAI 2019 Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias Patrick Forré, Joris M. Mooij
UAI 2018 Causal Discovery in the Presence of Measurement Error Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij
UAI 2018 Constraint-Based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Patrick Forré, Joris M. Mooij
NeurIPS 2018 Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij
UAI 2018 From Deterministic ODEs to Dynamic Structural Causal Models Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schölkopf
UAI 2017 Algebraic Equivalence Class Selection for Linear Structural Equation Models Thijs van Ommen, Joris M. Mooij
UAI 2017 Causal Consistency of Structural Equation Models Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf
NeurIPS 2017 Causal Effect Inference with Deep Latent-Variable Models Christos Louizos, Uri Shalit, Joris M. Mooij, David Sontag, Richard Zemel, Max Welling
NeurIPS 2016 Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij
JMLR 2016 Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf
UAI 2016 Proceedings of the UAI 2016 Workshop on Causation: Foundation to Application Co-Located with the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), Jersey City, USA, June 29, 2016 Frederick Eberhardt, Elias Bareinboim, Marloes H. Maathuis, Joris M. Mooij, Ricardo Silva
UAI 2015 An Empirical Study of the Simplest Causal Prediction Algorithm Jerome Cremers, Joris M. Mooij
JMLR 2014 Causal Discovery with Continuous Additive Noise Models Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf
UAI 2014 Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction Co-Located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), Quebec City, Canada, July 27, 2014 Joris M. Mooij, Dominik Janzing, Jonas Peters, Tom Claassen, Antti Hyttinen
UAI 2014 Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example Nicholas Cornia, Joris M. Mooij
UAI 2013 Cyclic Causal Discovery from Continuous Equilibrium Data Joris M. Mooij, Tom Heskes
UAI 2013 From Ordinary Differential Equations to Structural Causal Models: The Deterministic Case Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf
UAI 2013 Learning Sparse Causal Models Is Not NP-Hard Tom Claassen, Joris M. Mooij, Tom Heskes
ICML 2012 On Causal and Anticausal Learning Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris M. Mooij
NeurIPS 2011 Efficient Inference in Matrix-Variate Gaussian Models with \iid Observation Noise Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, Karsten Borgwardt
UAI 2011 Identifiability of Causal Graphs Using Functional Models Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf
NeurIPS 2011 On Causal Discovery with Cyclic Additive Noise Models Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf
UAI 2010 Inferring Deterministic Causal Relations Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf
NeurIPS 2010 Probabilistic Latent Variable Models for Distinguishing Between Cause and Effect Oliver Stegle, Dominik Janzing, Kun Zhang, Joris M. Mooij, Bernhard Schölkopf
MLOSS 2010 libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models Joris M. Mooij
UAI 2009 Identifying Confounders Using Additive Noise Models Dominik Janzing, Jonas Peters, Joris M. Mooij, Bernhard Schölkopf
ICML 2009 Regression by Dependence Minimization and Its Application to Causal Inference in Additive Noise Models Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf
NeurIPS 2008 Bounds on Marginal Probability Distributions Joris M. Mooij, Hilbert J. Kappen
NeurIPS 2008 Nonlinear Causal Discovery with Additive Noise Models Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, Bernhard Schölkopf
JMLR 2007 Loop Corrections for Approximate Inference on Factor Graphs Joris M. Mooij, Hilbert J. Kappen
JMLR 2007 Truncating the Loop Series Expansion for Belief Propagation Vicenç Gómez, Joris M. Mooij, Hilbert J. Kappen
UAI 2005 Sufficient Conditions for Convergence of Loopy Belief Propagation Joris M. Mooij, Hilbert J. Kappen
NeurIPS 2004 Validity Estimates for Loopy Belief Propagation on Binary Real-World Networks Joris M. Mooij, Hilbert J. Kappen