ML Anthology
Authors
Search
About
Moran, Shay
68 publications
COLT
2025
A Fine-Grained Characterization of PAC Learnability
Marco Bressan
,
Nataly Brukhim
,
Nicolò Cesa-Bianchi
,
Emmanuel Esposito
,
Yishay Mansour
,
Shay Moran
,
Maximilian Thiessen
NeurIPS
2025
Agnostic Learning Under Targeted Poisoning: Optimal Rates and the Role of Randomness
Bogdan Chornomaz
,
Yonatan Koren
,
Shay Moran
,
Tom Waknine
COLT
2025
Data Selection for ERMs
Steve Hanneke
,
Shay Moran
,
Alexander Shlimovich
,
Amir Yehudayoff
NeurIPS
2025
Marginal-Nonuniform PAC Learnability
Steve Hanneke
,
Shay Moran
,
Maximilian Thiessen
COLT
2025
Of Dice and Games: A Theory of Generalized Boosting
Marco Bressan
,
Nataly Brukhim
,
Nicolò Cesa-Bianchi
,
Emmanuel Esposito
,
Yishay Mansour
,
Shay Moran
,
Maximilian Thiessen
COLT
2025
Open Problem: Data Selection for Regression Tasks
Steve Hanneke
,
Shay Moran
,
Alexander Shlimovich
,
Amir Yehudayoff
NeurIPS
2025
Optimal Mistake Bounds for Transductive Online Learning
Zachary Chase
,
Steve Hanneke
,
Shay Moran
,
Jonathan Shafer
COLT
2025
Private List Learnability vs. Online List Learnability
Steve Hanneke
,
Shay Moran
,
Hilla Schefler
,
Iska Tsubari
NeurIPS
2025
Probably Approximately Precision and Recall Learning
Lee Cohen
,
Yishay Mansour
,
Shay Moran
,
Han Shao
NeurIPS
2025
Reconstruction and Secrecy Under Approximate Distance Queries
Shay Moran
,
Elizaveta Nesterova
COLT
2025
Spherical Dimension
Bogdan Chornomaz
,
Shay Moran
,
Tom Waknine
ICML
2025
The Role of Randomness in Stability
Max Hopkins
,
Shay Moran
COLT
2024
A Theory of Interpretable Approximations
Marco Bressan
,
Nicolò Cesa-Bianchi
,
Emmanuel Esposito
,
Yishay Mansour
,
Shay Moran
,
Maximilian Thiessen
NeurIPSW
2024
A Theory of Interpretable Approximations
Marco Bressan
,
Nicolò Cesa-Bianchi
,
Emmanuel Esposito
,
Yishay Mansour
,
Shay Moran
,
Maximilian Thiessen
COLT
2024
A Unified Characterization of Private Learnability via Graph Theory
Noga Alon
,
Shay Moran
,
Hilla Schefler
,
Amir Yehudayoff
NeurIPS
2024
Bandit-Feedback Online Multiclass Classification: Variants and Tradeoffs
Yuval Filmus
,
Steve Hanneke
,
Idan Mehalel
,
Shay Moran
NeurIPS
2024
Credit Attribution and Stable Compression
Roi Livni
,
Shay Moran
,
Kobbi Nissim
,
Chirag Pabbaraju
COLT
2024
Dual VC Dimension Obstructs Sample Compression by Embeddings
Zachary Chase
,
Bogdan Chornomaz
,
Steve Hanneke
,
Shay Moran
,
Amir Yehudayoff
NeurIPS
2024
Fast Rates for Bandit PAC Multiclass Classification
Liad Erez
,
Alon Cohen
,
Tomer Koren
,
Yishay Mansour
,
Shay Moran
NeurIPS
2024
Improved Sample Complexity for Multiclass PAC Learning
Steve Hanneke
,
Shay Moran
,
Qian Zhang
COLT
2024
Learnability Gaps of Strategic Classification
Lee Cohen
,
Yishay Mansour
,
Shay Moran
,
Han Shao
NeurIPS
2024
Learning-Augmented Algorithms with Explicit Predictors
Marek Eliáš
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
COLT
2024
List Sample Compression and Uniform Convergence
Steve Hanneke
,
Shay Moran
,
Waknine Tom
COLT
2024
Open Problem: Direct Sums in Learning Theory
Steve Hanneke
,
Shay Moran
,
Waknine Tom
COLT
2024
The Real Price of Bandit Information in Multiclass Classification
Liad Erez
,
Alon Cohen
,
Tomer Koren
,
Yishay Mansour
,
Shay Moran
NeurIPS
2024
Universal Rates for Active Learning
Steve Hanneke
,
Amin Karbasi
,
Shay Moran
,
Grigoris Velegkas
NeurIPS
2023
A Trichotomy for Transductive Online Learning
Steve Hanneke
,
Shay Moran
,
Jonathan Shafer
NeurIPS
2023
Adversarial Resilience in Sequential Prediction via Abstention
Surbhi Goel
,
Steve Hanneke
,
Shay Moran
,
Abhishek Shetty
NeurIPS
2023
Black-Box Differential Privacy for Interactive ML
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
,
Kobbi Nissim
,
Uri Stemmer
NeurIPSW
2023
Can Copyright Be Reduced to Privacy
Niva Elkin-Koren
,
Uri Hacohen
,
Roi Livni
,
Shay Moran
COLT
2023
Fine-Grained Distribution-Dependent Learning Curves
Olivier Bousquet
,
Steve Hanneke
,
Shay Moran
,
Jonathan Shafer
,
Ilya Tolstikhin
COLT
2023
Improper Multiclass Boosting
Nataly Brukhim
,
Steve Hanneke
,
Shay Moran
COLT
2023
List Online Classification
Shay Moran
,
Ohad Sharon
,
Iska Tsubari
,
Sivan Yosebashvili
NeurIPS
2023
Multiclass Boosting: Simple and Intuitive Weak Learning Criteria
Nataly Brukhim
,
Amit Daniely
,
Yishay Mansour
,
Shay Moran
COLT
2023
Multiclass Online Learning and Uniform Convergence
Steve Hanneke
,
Shay Moran
,
Vinod Raman
,
Unique Subedi
,
Ambuj Tewari
COLT
2023
Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension
Yuval Filmus
,
Steve Hanneke
,
Idan Mehalel
,
Shay Moran
ICML
2023
Statistical Indistinguishability of Learning Algorithms
Alkis Kalavasis
,
Amin Karbasi
,
Shay Moran
,
Grigoris Velegkas
NeurIPS
2023
The Bayesian Stability Zoo
Shay Moran
,
Hilla Schefler
,
Jonathan Shafer
COLT
2023
Universal Rates for Multiclass Learning
Steve Hanneke
,
Shay Moran
,
Qian Zhang
ICML
2022
A Resilient Distributed Boosting Algorithm
Yuval Filmus
,
Idan Mehalel
,
Shay Moran
UAI
2022
Active Learning with Label Comparisons
Gal Yona
,
Shay Moran
,
Gal Elidan
,
Amir Globerson
NeurIPS
2022
Integral Probability Metrics PAC-Bayes Bounds
Ron Amit
,
Baruch Epstein
,
Shay Moran
,
Ron Meir
COLT
2022
Monotone Learning
Olivier J Bousquet
,
Amit Daniely
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
,
Uri Stemmer
NeurIPS
2022
On Optimal Learning Under Targeted Data Poisoning
Steve Hanneke
,
Amin Karbasi
,
Mohammad Mahmoody
,
Idan Mehalel
,
Shay Moran
NeurIPS
2022
Universal Rates for Interactive Learning
Steve Hanneke
,
Amin Karbasi
,
Shay Moran
,
Grigoris Velegkas
NeurIPS
2021
Multiclass Boosting and the Cost of Weak Learning
Nataly Brukhim
,
Elad Hazan
,
Shay Moran
,
Indraneel Mukherjee
,
Robert E. Schapire
COLT
2021
Near Optimal Distributed Learning of Halfspaces with Two Parties
Mark Braverman
,
Gillat Kol
,
Shay Moran
,
Raghuvansh R. Saxena
COLT
2021
Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games
Steve Hanneke
,
Roi Livni
,
Shay Moran
NeurIPS
2021
Towards a Unified Information-Theoretic Framework for Generalization
Mahdi Haghifam
,
Gintare Karolina Dziugaite
,
Shay Moran
,
Dan Roy
NeurIPS
2020
A Limitation of the PAC-Bayes Framework
Roi Livni
,
Shay Moran
COLT
2020
Closure Properties for Private Classification and Online Prediction
Noga Alon
,
Amos Beimel
,
Shay Moran
,
Uri Stemmer
NeurIPS
2020
Learning from Mixtures of Private and Public Populations
Raef Bassily
,
Shay Moran
,
Anupama Nandi
NeurIPS
2020
Online Agnostic Boosting via Regret Minimization
Nataly Brukhim
,
Xinyi Chen
,
Elad Hazan
,
Shay Moran
ICML
2020
Private Query Release Assisted by Public Data
Raef Bassily
,
Albert Cheu
,
Shay Moran
,
Aleksandar Nikolov
,
Jonathan Ullman
,
Steven Wu
COLT
2020
Proper Learning, Helly Number, and an Optimal SVM Bound
Olivier Bousquet
,
Steve Hanneke
,
Shay Moran
,
Nikita Zhivotovskiy
NeurIPS
2020
Synthetic Data Generators -- Sequential and Private
Olivier Bousquet
,
Roi Livni
,
Shay Moran
NeurIPS
2019
An Adaptive Nearest Neighbor Rule for Classification
Akshay Balsubramani
,
Sanjoy Dasgupta
,
Yoav Freund
,
Shay Moran
NeurIPS
2019
Learning to Screen
Alon Cohen
,
Avinatan Hassidim
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
NeurIPS
2019
Limits of Private Learning with Access to Public Data
Noga Alon
,
Raef Bassily
,
Shay Moran
COLT
2019
On Communication Complexity of Classification Problems
Daniel Kane
,
Roi Livni
,
Shay Moran
,
Amir Yehudayoff
COLT
2019
Private Center Points and Learning of Halfspaces
Amos Beimel
,
Shay Moran
,
Kobbi Nissim
,
Uri Stemmer
NeurIPS
2019
Private Learning Implies Online Learning: An Efficient Reduction
Alon Gonen
,
Elad Hazan
,
Shay Moran
COLT
2019
The Optimal Approximation Factor in Density Estimation
Olivier Bousquet
,
Daniel Kane
,
Shay Moran
ALT
2018
Learners That Use Little Information
Raef Bassily
,
Shay Moran
,
Ido Nachum
,
Jonathan Shafer
,
Amir Yehudayoff
NeurIPS
2017
Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues
Noga Alon
,
Moshe Babaioff
,
Yannai A. Gonczarowski
,
Yishay Mansour
,
Shay Moran
,
Amir Yehudayoff
ALT
2016
Labeled Compression Schemes for Extremal Classes
Shay Moran
,
Manfred K. Warmuth
COLT
2016
Sign Rank Versus VC Dimension
Noga Alon
,
Shay Moran
,
Amir Yehudayoff
NeurIPS
2016
Supervised Learning Through the Lens of Compression
Ofir David
,
Shay Moran
,
Amir Yehudayoff