ML Anthology
Authors
Search
About
Moskovitz, Ted
13 publications
ICML
2025
Strategy Coopetition Explains the Emergence and Transience of In-Context Learning
Aaditya K Singh
,
Ted Moskovitz
,
Sara Dragutinović
,
Felix Hill
,
Stephanie C.Y. Chan
,
Andrew M Saxe
ICLR
2024
Confronting Reward Model Overoptimization with Constrained RLHF
Ted Moskovitz
,
Aaditya K Singh
,
Dj Strouse
,
Tuomas Sandholm
,
Ruslan Salakhutdinov
,
Anca Dragan
,
Stephen Marcus McAleer
ICML
2024
What Needs to Go Right for an Induction Head? a Mechanistic Study of In-Context Learning Circuits and Their Formation
Aaditya K Singh
,
Ted Moskovitz
,
Felix Hill
,
Stephanie C.Y. Chan
,
Andrew M Saxe
NeurIPS
2023
A State Representation for Diminishing Rewards
Ted Moskovitz
,
Samo Hromadka
,
Ahmed Touati
,
Diana Borsa
,
Maneesh Sahani
NeurIPSW
2023
Confronting Reward Model Overoptimization with Constrained RLHF
Ted Moskovitz
,
Aaditya Singh
,
Dj Strouse
,
Tuomas Sandholm
,
Ruslan Salakhutdinov
,
Anca Dragan
,
Stephen McAleer
ICLR
2023
Minimum Description Length Control
Ted Moskovitz
,
Ta-Chu Kao
,
Maneesh Sahani
,
Matthew Botvinick
ICML
2023
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
Ted Moskovitz
,
Brendan O’Donoghue
,
Vivek Veeriah
,
Sebastian Flennerhag
,
Satinder Singh
,
Tom Zahavy
NeurIPS
2023
The Transient Nature of Emergent In-Context Learning in Transformers
Aaditya Singh
,
Stephanie Chan
,
Ted Moskovitz
,
Erin Grant
,
Andrew Saxe
,
Felix Hill
ICMLW
2023
Undo Maps: A Tool for Adapting Policies to Perceptual Distortions
Abhi Gupta
,
Ted Moskovitz
,
David Alvarez-Melis
,
Aldo Pacchiano
AISTATS
2022
Towards an Understanding of Default Policies in Multitask Policy Optimization
Ted Moskovitz
,
Michael Arbel
,
Jack Parker-Holder
,
Aldo Pacchiano
ICLR
2022
A First-Occupancy Representation for Reinforcement Learning
Ted Moskovitz
,
Spencer R Wilson
,
Maneesh Sahani
ICLR
2021
Efficient Wasserstein Natural Gradients for Reinforcement Learning
Ted Moskovitz
,
Michael Arbel
,
Ferenc Huszar
,
Arthur Gretton
NeurIPS
2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Ted Moskovitz
,
Jack Parker-Holder
,
Aldo Pacchiano
,
Michael Arbel
,
Michael I. Jordan