Motani, Mehul

22 publications

ICML 2025 FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation Kei Sen Fong, Mehul Motani
JAIR 2025 Improving Mutual Information Based Feature Selection by Boosting Unique Relevance Shiyu Liu, Mehul Motani
ICLRW 2025 LENS: Learning and Evolving Numerical Scores for Cohort-Specific Clinical Insights Kei Sen Fong, Mehul Motani
CHIL 2025 Multi-Objective Fine-Tuning of Clinical Scoring Tables: Adapting to Variations in Demography and Data Kei Sen Fong, Mehul Motani
AISTATS 2025 Ordered $\mathcal{V}$-Information Growth: A Fresh Perspective on Shared Information Rohan Ghosh, Mehul Motani
ICML 2025 Pareto-Optimal Fronts for Benchmarking Symbolic Regression Algorithms Kei Sen Fong, Mehul Motani
ICML 2025 Pointwise Information Measures as Confidence Estimators in Deep Neural Networks: A Comparative Study Shelvia Wongso, Rohan Ghosh, Mehul Motani
ICLRW 2025 TINY: Semantic-Based Uncertainty Quantification in LLMS: A Case Study on Medical Explanation Generation Task. Nicholas Kian Boon Tan, Mehul Motani
TMLR 2025 Towards Robust Scale-Invariant Mutual Information Estimators Cheuk Ting Leung, Rohan Ghosh, Mehul Motani
CHIL 2024 Explainable and Privacy-Preserving Machine Learning via Domain-Aware Symbolic Regression Kei Sen Fong, Mehul Motani
AISTATS 2024 Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data Kei Sen Fong, Mehul Motani
AAAI 2024 Symbolic Regression Enhanced Decision Trees for Classification Tasks Kei Sen Fong, Mehul Motani
TMLR 2023 AP: Selective Activation for De-Sparsifying Pruned Networks Shiyu Liu, Rohan Ghosh, Mehul Motani
AAAI 2023 Local Intrinsic Dimensional Entropy Rohan Ghosh, Mehul Motani
MLHC 2023 Multi-View Modelling of Longitudinal Health Data for Improved Prognostication of Colorectal Cancer Recurrence Danliang Ho, Mehul Motani
TMLR 2023 Optimizing Learning Rate Schedules for Iterative Pruning of Deep Neural Networks Shiyu Liu, Rohan Ghosh, John Chong Min Tan, Mehul Motani
ICLR 2023 Rethinking Symbolic Regression: Morphology and Adaptability in the Context of Evolutionary Algorithms Kei Sen Fong, Shelvia Wongso, Mehul Motani
AISTATS 2023 Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural Networks Shelvia Wongso, Rohan Ghosh, Mehul Motani
MLHC 2022 Unified Auto Clinical Scoring (Uni-ACS) with Interpretable ML Models Anthony Li, Ming Lun Ong, Chien Wei Oei, Weixiang Lian, Hwee Pin Phua, Lin Htun Htet, Wei Yen Lim, Mehul Motani
NeurIPS 2021 Network-to-Network Regularization: Enforcing Occam's Razor to Improve Generalization Rohan Ghosh, Mehul Motani
ICML 2020 DropNet: Reducing Neural Network Complexity via Iterative Pruning Chong Min John Tan, Mehul Motani
ICCVW 2019 Investigating Convolutional Neural Networks Using Spatial Orderness Rohan Ghosh, Anupam K. Gupta, Mehul Motani