Mroueh, Youssef

42 publications

TMLR 2025 Information Theoretic Guarantees for Policy Alignment in Large Language Models Youssef Mroueh, Apoorva Nitsure
NeurIPS 2025 KL-Regularized RLHF with Multiple Reference Models: Exact Solutions and Sample Complexity Gholamali Aminian, Amir R. Asadi, Idan Shenfeld, Youssef Mroueh
ICLR 2025 Large Language Models Can Become Strong Self-Detoxifiers Ching-Yun Ko, Pin-Yu Chen, Payel Das, Youssef Mroueh, Soham Dan, Georgios Kollias, Subhajit Chaudhury, Tejaswini Pedapati, Luca Daniel
NeurIPS 2024 Distributional Preference Alignment of LLMs via Optimal Transport Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail Yurochkin, Kristjan Greenewald, Jiri Navratil, Jarret Ross
ICMLW 2024 Distributional Preference Alignment of LLMs via Optimal Transport Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail Yurochkin, Kristjan Greenewald, Jiri Navratil, Jarret Ross
ICMLW 2024 Information Theoretic Guarantees for Policy Alignment in Large Language Models Youssef Mroueh
NeurIPS 2024 Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking Gabriel Rioux, Apoorva Nitsure, Mattia Rigotti, Kristjan Greenewald, Youssef Mroueh
ICML 2024 Risk Aware Benchmarking of Large Language Models Apoorva Nitsure, Youssef Mroueh, Mattia Rigotti, Kristjan Greenewald, Brian Belgodere, Mikhail Yurochkin, Jiri Navratil, Igor Melnyk, Jarret Ross
NeurIPSW 2023 Duality and Sample Complexity for the Gromov-Wasserstein Distance Zhengxin Zhang, Ziv Goldfeld, Youssef Mroueh, Bharath Sriperumbudur
ICLR 2023 Learning with Stochastic Orders Carles Domingo-Enrich, Yair Schiff, Youssef Mroueh
NeurIPSW 2023 Risk Assessment and Statistical Significance in the Age of Foundation Models Apoorva Nitsure, Youssef Mroueh, Mattia Rigotti, Kristjan Greenewald, Brian Belgodere, Mikhail Yurochkin, Jiri Navratil, Igor Melnyk, Jarret Ross
NeurIPSW 2023 Towards a Statistical Theory of Learning to Learn In-Context with Transformers Youssef Mroueh
AISTATS 2022 Cycle Consistent Probability Divergences Across Different Spaces Zhengxin Zhang, Youssef Mroueh, Ziv Goldfeld, Bharath Sriperumbudur
ECML-PKDD 2022 Cloud-Based Real-Time Molecular Screening Platform with MolFormer Brian Belgodere, Vijil Chenthamarakshan, Payel Das, Pierre L. Dognin, Toby Kurien, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young
JAIR 2022 Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge Pierre L. Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young, Brian Belgodere
TMLR 2022 Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks David Alvarez-Melis, Yair Schiff, Youssef Mroueh
ICLR 2022 Tighter Sparse Approximation Bounds for ReLU Neural Networks Carles Domingo-Enrich, Youssef Mroueh
AISTATS 2021 On the Convergence of Gradient Descent in GANs: MMD GAN as a Gradient Flow Youssef Mroueh, Truyen Nguyen
ICLR 2021 Fair Mixup: Fairness via Interpolation Ching-Yao Chuang, Youssef Mroueh
AAAI 2021 Improved Mutual Information Estimation Youssef Mroueh, Igor Melnyk, Pierre L. Dognin, Jarret Ross, Tom Sercu
NeurIPS 2021 Measuring Generalization with Optimal Transport Ching-Yao Chuang, Youssef Mroueh, Kristjan Greenewald, Antonio Torralba, Stefanie Jegelka
NeurIPS 2021 Separation Results Between Fixed-Kernel and Feature-Learning Probability Metrics Carles Domingo i Enrich, Youssef Mroueh
NeurIPS 2020 A Decentralized Parallel Algorithm for Training Generative Adversarial Nets Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, Payel Das
ICLRW 2020 Nano-Material Configuration Design with Deep Surrogate Langevin Dynamics Thanh V. Nguyen, Youssef Mroueh, Samuel Hoffman, Payel Das, Pierre Dognin, Giuseppe Romano, Chinmay Hegde
ICLR 2020 Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang
NeurIPS 2020 Unbalanced Sobolev Descent Youssef Mroueh, Mattia Rigotti
AISTATS 2020 Unsupervised Hierarchy Matching with Optimal Transport over Hyperbolic Spaces David Alvarez-Melis, Youssef Mroueh, Tommi Jaakkola
AISTATS 2020 Wasserstein Style Transfer Youssef Mroueh
AISTATS 2019 Implicit Kernel Learning Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabas Poczos
ICLRW 2019 Improved Adversarial Image Captioning Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Tom Sercu
AISTATS 2019 Sobolev Descent Youssef Mroueh, Tom Sercu, Anant Raj
NeurIPS 2019 Sobolev Independence Criterion Youssef Mroueh, Tom Sercu, Mattia Rigotti, Inkit Padhi, Cicero Nogueira dos Santos
ICLR 2019 Wasserstein Barycenter Model Ensembling Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Cicero Dos Santos, Tom Sercu
ICLR 2018 Sobolev GAN Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, Yu Cheng
AISTATS 2017 Co-Occurring Directions Sketching for Approximate Matrix Multiply Youssef Mroueh, Etienne Marcheret, Vaibhava Goel
NeurIPS 2017 Fisher GAN Youssef Mroueh, Tom Sercu
AISTATS 2017 Local Group Invariant Representations via Orbit Embeddings Anant Raj, Abhishek Kumar, Youssef Mroueh, Tom Fletcher, Bernhard Schölkopf
ICML 2017 McGan: Mean and Covariance Feature Matching GAN Youssef Mroueh, Tom Sercu, Vaibhava Goel
CVPR 2017 Self-Critical Sequence Training for Image Captioning Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, Vaibhava Goel
ICML 2015 Convex Learning of Multiple Tasks and Their Structure Carlo Ciliberto, Youssef Mroueh, Tomaso Poggio, Lorenzo Rosasco
NeurIPS 2015 Learning with Group Invariant Features: A Kernel Perspective. Youssef Mroueh, Stephen Voinea, Tomaso A Poggio
NeurIPS 2012 Multiclass Learning with Simplex Coding Youssef Mroueh, Tomaso Poggio, Lorenzo Rosasco, Jean-jeacques Slotine