ML Anthology
Authors
Search
About
Muandet, Krikamol
44 publications
NeurIPS
2025
An Analysis of Causal Effect Estimation Using Outcome Invariant Data Augmentation
Uzair Akbar
,
Niki Kilbertus
,
Hao Shen
,
Krikamol Muandet
,
Bo Dai
AISTATS
2025
Credal Two-Sample Tests of Epistemic Uncertainty
Siu Lun Chau
,
Antonin Schrab
,
Arthur Gretton
,
Dino Sejdinovic
,
Krikamol Muandet
NeurIPS
2025
Integral Imprecise Probability Metrics
Siu Lun Chau
,
Michele Caprio
,
Krikamol Muandet
ICML
2025
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
,
Siu Lun Chau
,
Francois-Xavier Briol
,
Krikamol Muandet
CVPR
2025
Sufficient Invariant Learning for Distribution Shift
Taero Kim
,
Subeen Park
,
Sungjun Lim
,
Yonghan Jung
,
Krikamol Muandet
,
Kyungwoo Song
UAI
2025
Truthful Elicitation of Imprecise Forecasts
Anurag Singh
,
Siu Lun Chau
,
Krikamol Muandet
AAAI
2024
Causal Strategic Learning with Competitive Selection
Kiet Q. H. Vo
,
Muneeb Aadil
,
Siu Lun Chau
,
Krikamol Muandet
ICML
2024
Domain Generalisation via Imprecise Learning
Anurag Singh
,
Siu Lun Chau
,
Shahine Bouabid
,
Krikamol Muandet
TMLR
2024
Learning Counterfactually Invariant Predictors
Francesco Quinzan
,
Cecilia Casolo
,
Krikamol Muandet
,
Yucen Luo
,
Niki Kilbertus
AISTATS
2024
Looping in the Human: Collaborative and Explainable Bayesian Optimization
Masaki Adachi
,
Brady Planden
,
David Howey
,
Michael A. Osborne
,
Sebastian Orbell
,
Natalia Ares
,
Krikamol Muandet
,
Siu Lun Chau
TMLR
2024
Robust Feature Inference: A Test-Time Defense Strategy Using Spectral Projections
Anurag Singh
,
Mahalakshmi Sabanayagam
,
Krikamol Muandet
,
Debarghya Ghoshdastidar
NeurIPS
2023
A Measure-Theoretic Axiomatisation of Causality
Junhyung Park
,
Simon Buchholz
,
Bernhard Schölkopf
,
Krikamol Muandet
NeurIPS
2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
,
Krikamol Muandet
,
Dino Sejdinovic
TMLR
2023
Gated Domain Units for Multi-Source Domain Generalization
Simon Föll
,
Alina Dubatovka
,
Eugen Ernst
,
Siu Lun Chau
,
Martin Maritsch
,
Patrik Okanovic
,
Gudrun Thaeter
,
Joachim M. Buhmann
,
Felix Wortmann
,
Krikamol Muandet
ICLRW
2023
Impossibility of Collective Intelligence
Krikamol Muandet
ICML
2023
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
,
Krikamol Muandet
,
Simon Kornblith
,
Bernhard Schölkopf
,
Been Kim
NeurIPSW
2023
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
,
Krikamol Muandet
,
Simon Kornblith
,
Bernhard Schölkopf
,
Been Kim
ALT
2023
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
,
Krikamol Muandet
AISTATS
2022
A Witness Two-Sample Test
Jonas M. Kübler
,
Wittawat Jitkrittum
,
Bernhard Schölkopf
,
Krikamol Muandet
NeurIPS
2022
AutoML Two-Sample Test
Jonas M. Kübler
,
Vincent Stimper
,
Simon Buchholz
,
Krikamol Muandet
,
Bernhard Schölkopf
ICML
2022
Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions
Heiner Kremer
,
Jia-Jie Zhu
,
Krikamol Muandet
,
Bernhard Schölkopf
ICML
2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
,
Uri Shalit
,
Bernhard Schölkopf
,
Krikamol Muandet
JMLR
2021
Counterfactual Mean Embeddings
Krikamol Muandet
,
Motonobu Kanagawa
,
Sorawit Saengkyongam
,
Sanparith Marukatat
ICML
2021
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
Afsaneh Mastouri
,
Yuchen Zhu
,
Limor Gultchin
,
Anna Korba
,
Ricardo Silva
,
Matt Kusner
,
Arthur Gretton
,
Krikamol Muandet
NeurIPS
2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
,
Krikamol Muandet
NeurIPS
2020
Dual Instrumental Variable Regression
Krikamol Muandet
,
Arash Mehrjou
,
Si Kai Lee
,
Anant Raj
AISTATS
2020
Fair Decisions Despite Imperfect Predictions
Niki Kilbertus
,
Manuel Gomez Rodriguez
,
Bernhard Schölkopf
,
Krikamol Muandet
,
Isabel Valera
AISTATS
2020
Kernel Conditional Density Operators
Ingmar Schuster
,
Mattes Mollenhauer
,
Stefan Klus
,
Krikamol Muandet
UAI
2020
Kernel Conditional Moment Test via Maximum Moment Restriction
Krikamol Muandet
,
Wittawat Jitkrittum
,
Jonas Kübler
NeurIPS
2020
Learning Kernel Tests Without Data Splitting
Jonas Kübler
,
Wittawat Jitkrittum
,
Bernhard Schölkopf
,
Krikamol Muandet
NeurIPS
2020
MATE: Plugging in Model Awareness to Task Embedding for Meta Learning
Xiaohan Chen
,
Zhangyang Wang
,
Siyu Tang
,
Krikamol Muandet
JMLR
2018
Design and Analysis of the NIPS 2016 Review Process
Nihar B. Shah
,
Behzad Tabibian
,
Krikamol Muandet
,
Isabelle Guyon
,
Ulrike von Luxburg
FnTML
2017
Kernel Mean Embedding of Distributions: A Review and Beyond
Krikamol Muandet
,
Kenji Fukumizu
,
Bharath K. Sriperumbudur
,
Bernhard Schölkopf
JMLR
2017
Minimax Estimation of Kernel Mean Embeddings
Ilya Tolstikhin
,
Bharath K. Sriperumbudur
,
Krikamol Muandet
JMLR
2016
Kernel Mean Shrinkage Estimators
Krikamol Muandet
,
Bharath Sriperumbudur
,
Kenji Fukumizu
,
Arthur Gretton
,
Bernhard Schölkopf
JMLR
2015
The Randomized Causation Coefficient
David Lopez-Paz
,
Krikamol Muandet
,
Benjamin Recht
ICML
2015
Towards a Learning Theory of Cause-Effect Inference
David Lopez-Paz
,
Krikamol Muandet
,
Bernhard Schölkopf
,
Iliya Tolstikhin
UAI
2014
A Permutation-Based Kernel Conditional Independence Test
Gary Doran
,
Krikamol Muandet
,
Kun Zhang
,
Bernhard Schölkopf
ICML
2014
Kernel Mean Estimation and Stein Effect
Krikamol Muandet
,
Kenji Fukumizu
,
Bharath Sriperumbudur
,
Arthur Gretton
,
Bernhard Schoelkopf
NeurIPS
2014
Kernel Mean Estimation via Spectral Filtering
Krikamol Muandet
,
Bharath Sriperumbudur
,
Bernhard Schölkopf
ICML
2013
Domain Adaptation Under Target and Conditional Shift
Kun Zhang
,
Bernhard Schölkopf
,
Krikamol Muandet
,
Zhikun Wang
ICML
2013
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
,
David Balduzzi
,
Bernhard Schölkopf
UAI
2013
One-Class Support Measure Machines for Group Anomaly Detection
Krikamol Muandet
,
Bernhard Schölkopf
NeurIPS
2012
Learning from Distributions via Support Measure Machines
Krikamol Muandet
,
Kenji Fukumizu
,
Francesco Dinuzzo
,
Bernhard Schölkopf