ML Anthology
Authors
Search
About
Mukherjee, Sayan
28 publications
TMLR
2025
Local Differential Privacy-Preserving Spectral Clustering for General Graphs
Sayan Mukherjee
,
Vorapong Suppakitpaisarn
NeurIPS
2023
Asymptotics of Bayesian Uncertainty Estimation in Random Features Regression
Youngsoo Baek
,
Samuel Berchuck
,
Sayan Mukherjee
ICML
2023
Global Optimality of Elman-Type RNNs in the Mean-Field Regime
Andrea Agazzi
,
Jianfeng Lu
,
Sayan Mukherjee
JMLR
2022
Bayesian Multinomial Logistic Normal Models Through Marginally Latent Matrix-T Processes
Justin D. Silverman
,
Kimberly Roche
,
Zachary C. Holmes
,
Lawrence A. David
,
Sayan Mukherjee
COLT
2022
Tight Query Complexity Bounds for Learning Graph Partitions
Xizhi Liu
,
Sayan Mukherjee
JMLR
2021
Subspace Clustering Through Sub-Clusters
Weiwei Li
,
Jan Hannig
,
Sayan Mukherjee
NeurIPSW
2020
Multiple Hypothesis Testing with Persistent Homology
Mikael Vejdemo-Johansson
,
Sayan Mukherjee
UAI
2018
Scalable Algorithms for Learning High-Dimensional Linear Mixed Models
Zilong Tan
,
Kimberly Roche
,
Xiang Zhou
,
Sayan Mukherjee
JMLR
2017
Adaptive Randomized Dimension Reduction on Massive Data
Gregory Darnell
,
Stoyan Georgiev
,
Sayan Mukherjee
,
Barbara E Engelhardt
ICML
2017
Partitioned Tensor Factorizations for Learning Mixed Membership Models
Zilong Tan
,
Sayan Mukherjee
JMLR
2016
Bayesian Group Factor Analysis with Structured Sparsity
Shiwen Zhao
,
Chuan Gao
,
Sayan Mukherjee
,
Barbara E Engelhardt
MLJ
2011
Estimating Variable Structure and Dependence in Multitask Learning via Gradients
Justin Guinney
,
Qiang Wu
,
Sayan Mukherjee
JMLR
2010
Learning Gradients: Predictive Models That Infer Geometry and Statistical Dependence
Qiang Wu
,
Justin Guinney
,
Mauro Maggioni
,
Sayan Mukherjee
AISTATS
2010
Supervised Dimension Reduction Using Bayesian Mixture Modeling
Kai Mao
,
Feng Liang
,
Sayan Mukherjee
NeurIPS
2008
Localized Sliced Inverse Regression
Qiang Wu
,
Sayan Mukherjee
,
Feng Liang
JMLR
2007
Characterizing the Function Space for Bayesian Kernel Models
Natesh S. Pillai
,
Qiang Wu
,
Feng Liang
,
Sayan Mukherjee
,
Robert L. Wolpert
JMLR
2006
Estimation of Gradients and Coordinate Covariation in Classification
Sayan Mukherjee
,
Qiang Wu
JMLR
2006
Learning Coordinate Covariances via Gradients
Sayan Mukherjee
,
Ding-Xuan Zhou
CVPR
2005
Gene Selection via a Spectral Approach
Lior Wolf
,
Amnon Shashua
,
Sayan Mukherjee
CVPRW
2005
Gene Selection via a Spectral Approach
Lior Wolf
,
Amnon Shashua
,
Sayan Mukherjee
COLT
2005
Permutation Tests for Classification
Polina Golland
,
Feng Liang
,
Sayan Mukherjee
,
Dmitry Panchenko
MLJ
2002
Choosing Multiple Parameters for Support Vector Machines
Olivier Chapelle
,
Vladimir Vapnik
,
Olivier Bousquet
,
Sayan Mukherjee
COLT
2001
Bounds on Sample Size for Policy Evaluation in Markov Environments
Leonid Peshkin
,
Sayan Mukherjee
CVPR
2001
Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images
Bernd Heisele
,
Thomas Serre
,
Sayan Mukherjee
,
Tomaso A. Poggio
NeurIPS
2001
The Fidelity of Local Ordinal Encoding
Javid Sadr
,
Sayan Mukherjee
,
Keith Thoresz
,
Pawan Sinha
NeurIPS
2000
Feature Selection for SVMs
Jason Weston
,
Sayan Mukherjee
,
Olivier Chapelle
,
Massimiliano Pontil
,
Tomaso Poggio
,
Vladimir Vapnik
ALT
2000
On the Noise Model of Support Vector Machines Regression
Massimiliano Pontil
,
Sayan Mukherjee
,
Federico Girosi
NeurIPS
1999
Support Vector Method for Multivariate Density Estimation
Vladimir Vapnik
,
Sayan Mukherjee