ML Anthology
Authors
Search
About
Munteanu, Alexander
14 publications
ICML
2025
Improved Learning via K-DTW: A Novel Dissimilarity Measure for Curves
Amer Krivošija
,
Alexander Munteanu
,
André Nusser
,
Chris Schwiegelshohn
NeurIPS
2024
Data Subsampling for Poisson Regression with Pth-Root-Link
Han Cheng Lie
,
Alexander Munteanu
ICML
2024
Optimal Bounds for $\ell_p$ Sensitivity Sampling via $\ell_2$ Augmentation
Alexander Munteanu
,
Simon Omlor
AISTATS
2024
Scalable Learning of Item Response Theory Models
Susanne Frick
,
Amer Krivosija
,
Alexander Munteanu
ICML
2024
Turnstile $\ell_p$ Leverage Score Sampling with Applications
Alexander Munteanu
,
Simon Omlor
ICLR
2023
Almost Linear Constant-Factor Sketching for $\ell_1$ and Logistic Regression
Alexander Munteanu
,
Simon Omlor
,
David Woodruff
AISTATS
2023
Optimal Sketching Bounds for Sparse Linear Regression
Tung Mai
,
Alexander Munteanu
,
Cameron Musco
,
Anup Rao
,
Chris Schwiegelshohn
,
David Woodruff
AISTATS
2022
P-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
Alexander Munteanu
,
Simon Omlor
,
Christian Peters
ICML
2022
Bounding the Width of Neural Networks via Coupled Initialization a Worst Case Analysis
Alexander Munteanu
,
Simon Omlor
,
Zhao Song
,
David Woodruff
ICML
2021
Oblivious Sketching for Logistic Regression
Alexander Munteanu
,
Simon Omlor
,
David Woodruff
ICML
2019
A Framework for Bayesian Optimization in Embedded Subspaces
Amin Nayebi
,
Alexander Munteanu
,
Matthias Poloczek
NeurIPS
2019
Random Projections and Sampling Algorithms for Clustering of High-Dimensional Polygonal Curves
Stefan Meintrup
,
Alexander Munteanu
,
Dennis Rohde
AAAI
2018
Core Dependency Networks
Alejandro Molina
,
Alexander Munteanu
,
Kristian Kersting
NeurIPS
2018
On Coresets for Logistic Regression
Alexander Munteanu
,
Chris Schwiegelshohn
,
Christian Sohler
,
David Woodruff