Murphy, Kevin P.

38 publications

NeurIPS 2024 What Type of Inference Is Planning? Miguel Lázaro-Gredilla, Li Yang Ku, Kevin P. Murphy, Dileep George
NeurIPS 2023 Beyond Invariance: Test-Time Label-Shift Adaptation for Addressing "Spurious" Correlations Qingyao Sun, Kevin P. Murphy, Sayna Ebrahimi, Alexander D'Amour
NeurIPS 2023 SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang Macherey, Yanping Huang, David A. Ross, Irfan A. Essa, Yonatan Bisk, Ming-Hsuan Yang, Kevin P. Murphy, Alexander Hauptmann, Lu Jiang
NeurIPS 2019 Language as an Abstraction for Hierarchical Deep Reinforcement Learning YiDing Jiang, Shixiang Gu, Kevin P. Murphy, Chelsea Finn
ICLR 2019 Modeling Uncertainty with Hedged Instance Embeddings Seong Joon Oh, Kevin P. Murphy, Jiyan Pan, Joseph Roth, Florian Schroff, Andrew C. Gallagher
NeurIPS 2019 Unsupervised Learning of Object Structure and Dynamics from Videos Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P. Murphy, Honglak Lee
NeurIPS 2015 Bayesian Dark Knowledge Anoop Korattikara Balan, Vivek Rathod, Kevin P. Murphy, Max Welling
ICCV 2015 Im2Calories: Towards an Automated Mobile Vision Food Diary Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban, Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin P. Murphy
ICCV 2015 Probabilistic Label Relation Graphs with Ising Models Nan Ding, Jia Deng, Kevin P. Murphy, Hartmut Neven
ICCV 2015 Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, Alan L. Yuille
NeurIPS 2012 Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression Mohammad Emtiyaz Khan, Shakir Mohamed, Kevin P. Murphy
UAI 2012 Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, August 14-18, 2012 Nando de Freitas, Kevin P. Murphy
CVPR 2011 Identifying Players in Broadcast Sports Videos Using Conditional Random Fields Wei-Lwun Lu, Jo-Anne Ting, Kevin P. Murphy, James J. Little
ICML 2011 Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models Benjamin M. Marlin, Mohammad Emtiyaz Khan, Kevin P. Murphy
NeurIPS 2010 Variational Bounds for Mixed-Data Factor Analysis Mohammad Emtiyaz Khan, Guillaume Bouchard, Kevin P. Murphy, Benjamin M. Marlin
NeurIPS 2009 Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models Baback Moghaddam, Mohammad Emtiyaz Khan, Kevin P. Murphy, Benjamin M. Marlin
UAI 2009 Group Sparse Priors for Covariance Estimation Benjamin M. Marlin, Mark Schmidt, Kevin P. Murphy
UAI 2009 Modeling Discrete Interventional Data Using Directed Cyclic Graphical Models Mark Schmidt, Kevin P. Murphy
ICML 2009 Sparse Gaussian Graphical Models with Unknown Block Structure Benjamin M. Marlin, Kevin P. Murphy
CVPR 2008 Structure Learning in Random Fields for Heart Motion Abnormality Detection Mark Schmidt, Kevin P. Murphy, Glenn Fung, Rómer Rosales
UAI 2007 Bayesian Structure Learning Using Dynamic Programming and MCMC Daniel Eaton, Kevin P. Murphy
AAAI 2007 Learning Graphical Model Structure Using L1-Regularization Paths Mark Schmidt, Alexandru Niculescu-Mizil, Kevin P. Murphy
ICML 2007 Modeling Changing Dependency Structure in Multivariate Time Series Xiang Xuan, Kevin P. Murphy
ICML 2006 Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, Kevin P. Murphy
NeurIPS 2004 Contextual Models for Object Detection Using Boosted Random Fields Antonio Torralba, Kevin P. Murphy, William T. Freeman
CVPR 2004 Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection Antonio Torralba, Kevin P. Murphy, William T. Freeman
ICCV 2003 Context-Based Vision System for Place and Object Recognition Antonio Torralba, Kevin P. Murphy, William T. Freeman, Mark A. Rubin
NeurIPS 2003 Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes Kevin P. Murphy, Antonio Torralba, William T. Freeman
NeurIPS 2001 Linear-Time Inference in Hierarchical HMMs Kevin P. Murphy, Mark A. Paskin
UAI 2001 The Factored Frontier Algorithm for Approximate Inference in DBNs Kevin P. Murphy, Yair Weiss
UAI 2000 Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, Stuart Russell
ICCV 1999 A Dynamic Bayesian Network Approach to Figure Tracking Using Learned Dynamic Models Vladimir Pavlovic, James M. Rehg, Tat-Jen Cham, Kevin P. Murphy
UAI 1999 A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables Kevin P. Murphy
NeurIPS 1999 Bayesian mAP Learning in Dynamic Environments Kevin P. Murphy
UAI 1999 Loopy Belief Propagation for Approximate Inference: An Empirical Study Kevin P. Murphy, Yair Weiss, Michael I. Jordan
CVPR 1999 Vision-Based Speaker Detection Using Bayesian Networks James M. Rehg, Kevin P. Murphy, Paul W. Fieguth
UAI 1998 Learning the Structure of Dynamic Probabilistic Networks Nir Friedman, Kevin P. Murphy, Stuart Russell
IJCAI 1997 Space-Efficient Inference in Dynamic Probabilistic Networks John Binder, Kevin P. Murphy, Stuart Russell