ML Anthology
Authors
Search
About
Muthukumar, Vidya
23 publications
COLT
2025
Estimating Stationary Mass, Frequency by Frequency
Milind Nakul
,
Vidya Muthukumar
,
Ashwin Pananjady
JMLR
2025
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Kuo-Wei Lai
,
Vidya Muthukumar
ICML
2025
Improved and Oracle-Efficient Online $\ell_1$-Multicalibration
Rohan Ghuge
,
Vidya Muthukumar
,
Sahil Singla
ICLRW
2025
On the Unreasonable Effectiveness of Last-Layer Retraining
John Collins Hill
,
Tyler LaBonte
,
Xinchen Zhang
,
Vidya Muthukumar
AISTATS
2025
Task Shift: From Classification to Regression in Overparameterized Linear Models
Tyler LaBonte
,
Kuo-Wei Lai
,
Vidya Muthukumar
ICML
2024
Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance
Chiraag Kaushik
,
Ran Liu
,
Chi-Heng Lin
,
Amrit Khera
,
Matthew Y Jin
,
Wenrui Ma
,
Vidya Muthukumar
,
Eva L Dyer
TMLR
2024
Estimating Optimal Policy Value in Linear Contextual Bandits Beyond Gaussianity
Jonathan Lee
,
Weihao Kong
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Emma Brunskill
JMLR
2024
Just Wing It: Near-Optimal Estimation of Missing Mass in a Markovian Sequence
Ashwin Pananjady
,
Vidya Muthukumar
,
Andrew Thangaraj
UAI
2024
One Shot Inverse Reinforcement Learning for Stochastic Linear Bandits
Etash Guha
,
Jim James
,
Krishna Acharya
,
Vidya Muthukumar
,
Ashwin Pananjady
NeurIPS
2024
Precise Asymptotics of Reweighted Least-Squares Algorithms for Linear Diagonal Networks
Chiraag Kaushik
,
Justin Romberg
,
Vidya Muthukumar
JMLR
2024
The Good, the Bad and the Ugly Sides of Data Augmentation: An Implicit Spectral Regularization Perspective
Chi-Heng Lin
,
Chiraag Kaushik
,
Eva L. Dyer
,
Vidya Muthukumar
NeurIPS
2024
The Group Robustness Is in the Details: Revisiting Finetuning Under Spurious Correlations
Tyler LaBonte
,
John C. Hill
,
Xinchen Zhang
,
Vidya Muthukumar
,
Abhishek Kumar
NeurIPS
2023
Faster Margin Maximization Rates for Generic Optimization Methods
Guanghui Wang
,
Zihao Hu
,
Vidya Muthukumar
,
Jacob D. Abernethy
NeurIPS
2023
Towards Last-Layer Retraining for Group Robustness with Fewer Annotations
Tyler LaBonte
,
Vidya Muthukumar
,
Abhishek Kumar
NeurIPS
2022
Adaptive Oracle-Efficient Online Learning
Guanghui Wang
,
Zihao Hu
,
Vidya Muthukumar
,
Jacob D. Abernethy
NeurIPSW
2022
Dropout Disagreement: A Recipe for Group Robustness with Fewer Annotations
Tyler LaBonte
,
Vidya Muthukumar
,
Abhishek Kumar
AISTATS
2021
On the Proliferation of Support Vectors in High Dimensions
Daniel Hsu
,
Vidya Muthukumar
,
Ji Xu
AISTATS
2021
Online Model Selection for Reinforcement Learning with Function Approximation
Jonathan Lee
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Weihao Kong
,
Emma Brunskill
NeurIPS
2021
Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation
Ke Wang
,
Vidya Muthukumar
,
Christos Thrampoulidis
JMLR
2021
Classification vs Regression in Overparameterized Regimes: Does the Loss Function Matter?
Vidya Muthukumar
,
Adhyyan Narang
,
Vignesh Subramanian
,
Mikhail Belkin
,
Daniel Hsu
,
Anant Sahai
AISTATS
2020
OSOM: A Simultaneously Optimal Algorithm for Multi-Armed and Linear Contextual Bandits
Niladri Chatterji
,
Vidya Muthukumar
,
Peter Bartlett
AISTATS
2019
Best of Many Worlds: Robust Model Selection for Online Supervised Learning
Vidya Muthukumar
,
Mitas Ray
,
Anant Sahai
,
Peter Bartlett
CVPRW
2019
Color-Theoretic Experiments to Understand Unequal Gender Classification Accuracy from Face Images
Vidya Muthukumar