Narayanan, Arvind

9 publications

TMLR 2025 AI Agents That Matter Sayash Kapoor, Benedikt Stroebl, Zachary S Siegel, Nitya Nadgir, Arvind Narayanan
NeurIPS 2025 Establishing Best Practices in Building Rigorous Agentic Benchmarks Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy K Zhang, Shu Liu, Sasha Cui, Sayash Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala Dhamala, Jacob Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Antony Kellermann, Jasjeet S Sekhon, Jacob Steinhardt, Sarah Schwettmann, Arvind Narayanan, Matei Zaharia, Ion Stoica, Percy Liang, Daniel Kang
UAI 2025 Hindsight Merging: Diverse Data Generation with Language Models Veniamin Veselovsky, Benedikt Stroebl, Gianluca Bencomo, Dilip Arumugam, Lisa Schut, Arvind Narayanan, Thomas L. Griffiths
ICML 2025 Position: In-House Evaluation Is Not Enough. Towards Robust Third-Party Evaluation and Flaw Disclosure for General-Purpose AI Shayne Longpre, Kevin Klyman, Ruth Elisabeth Appel, Sayash Kapoor, Rishi Bommasani, Michelle Sahar, Sean Mcgregor, Avijit Ghosh, Borhane Blili-Hamelin, Nathan Butters, Alondra Nelson, Dr. Amit Elazari, Andrew Sellars, Casey John Ellis, Dane Sherrets, Dawn Song, Harley Geiger, Ilona Cohen, Lauren Mcilvenny, Madhulika Srikumar, Mark M. Jaycox, Markus Anderljung, Nadine Farid Johnson, Nicholas Carlini, Nicolas Miailhe, Nik Marda, Peter Henderson, Rebecca S. Portnoff, Rebecca Weiss, Victoria Westerhoff, Yacine Jernite, Rumman Chowdhury, Percy Liang, Arvind Narayanan
TMLR 2024 CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Zachary S Siegel, Sayash Kapoor, Nitya Nadgir, Benedikt Stroebl, Arvind Narayanan
ICML 2024 Position: A Safe Harbor for AI Evaluation and Red Teaming Shayne Longpre, Sayash Kapoor, Kevin Klyman, Ashwin Ramaswami, Rishi Bommasani, Borhane Blili-Hamelin, Yangsibo Huang, Aviya Skowron, Zheng Xin Yong, Suhas Kotha, Yi Zeng, Weiyan Shi, Xianjun Yang, Reid Southen, Alexander Robey, Patrick Chao, Diyi Yang, Ruoxi Jia, Daniel Kang, Alex Pentland, Arvind Narayanan, Percy Liang, Peter Henderson
ICML 2024 Position: On the Societal Impact of Open Foundation Models Sayash Kapoor, Rishi Bommasani, Kevin Klyman, Shayne Longpre, Ashwin Ramaswami, Peter Cihon, Aspen K Hopkins, Kevin Bankston, Stella Biderman, Miranda Bogen, Rumman Chowdhury, Alex Engler, Peter Henderson, Yacine Jernite, Seth Lazar, Stefano Maffulli, Alondra Nelson, Joelle Pineau, Aviya Skowron, Dawn Song, Victor Storchan, Daniel Zhang, Daniel E. Ho, Percy Liang, Arvind Narayanan
TMLR 2024 The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources Shayne Longpre, Stella Biderman, Alon Albalak, Hailey Schoelkopf, Daniel McDuff, Sayash Kapoor, Kevin Klyman, Kyle Lo, Gabriel Ilharco, Nay San, Maribeth Rauh, Aviya Skowron, Bertie Vidgen, Laura Weidinger, Arvind Narayanan, Victor Sanh, David Ifeoluwa Adelani, Percy Liang, Rishi Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, Luca Soldaini
ECCV 2020 REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets Angelina Wang, Arvind Narayanan, Olga Russakovsky