ML Anthology
Authors
Search
About
Ng, Ignavier
29 publications
ICML
2025
A General Representation-Based Approach to Multi-Source Domain Adaptation
Ignavier Ng
,
Yan Li
,
Zijian Li
,
Yujia Zheng
,
Guangyi Chen
,
Kun Zhang
ICLR
2025
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
,
Yuxing Huang
,
Wenqin Liu
,
Haoran Deng
,
Ignavier Ng
,
Kun Zhang
,
Mingming Gong
,
Yian Ma
,
Biwei Huang
ICLR
2025
Analytic DAG Constraints for Differentiable DAG Learning
Zhen Zhang
,
Ignavier Ng
,
Dong Gong
,
Yuhang Liu
,
Mingming Gong
,
Biwei Huang
,
Kun Zhang
,
Anton van den Hengel
,
Javen Qinfeng Shi
AISTATS
2025
Causal Representation Learning from General Environments Under Nonparametric Mixing
Ignavier Ng
,
Shaoan Xie
,
Xinshuai Dong
,
Peter Spirtes
,
Kun Zhang
ICLR
2025
Differentiable Causal Discovery for Latent Hierarchical Causal Models
Parjanya Prajakta Prashant
,
Ignavier Ng
,
Kun Zhang
,
Biwei Huang
ICML
2025
Latent Variable Causal Discovery Under Selection Bias
Haoyue Dai
,
Yiwen Qiu
,
Ignavier Ng
,
Xinshuai Dong
,
Peter Spirtes
,
Kun Zhang
ICML
2025
Permutation-Based Rank Test in the Presence of Discretization and Application in Causal Discovery with Mixed Data
Xinshuai Dong
,
Ignavier Ng
,
Boyang Sun
,
Haoyue Dai
,
Guang-Yuan Hao
,
Shunxing Fan
,
Peter Spirtes
,
Yumou Qiu
,
Kun Zhang
ICLR
2025
Synergy Between Sufficient Changes and Sparse Mixing Procedure for Disentangled Representation Learning
Zijian Li
,
Shunxing Fan
,
Yujia Zheng
,
Ignavier Ng
,
Shaoan Xie
,
Guangyi Chen
,
Xinshuai Dong
,
Ruichu Cai
,
Kun Zhang
ICLR
2025
When Selection Meets Intervention: Additional Complexities in Causal Discovery
Haoyue Dai
,
Ignavier Ng
,
Jianle Sun
,
Zeyu Tang
,
Gongxu Luo
,
Xinshuai Dong
,
Peter Spirtes
,
Kun Zhang
ICLR
2024
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Xinshuai Dong
,
Biwei Huang
,
Ignavier Ng
,
Xiangchen Song
,
Yujia Zheng
,
Songyao Jin
,
Roberto Legaspi
,
Peter Spirtes
,
Kun Zhang
ICML
2024
Causal Representation Learning from Multiple Distributions: A General Setting
Kun Zhang
,
Shaoan Xie
,
Ignavier Ng
,
Yujia Zheng
NeurIPSW
2024
Differentiable Causal Discovery for Latent Hierarchical Causal Models
Parjanya Prajakta Prashant
,
Ignavier Ng
,
Kun Zhang
,
Biwei Huang
ICLR
2024
Federated Causal Discovery from Heterogeneous Data
Loka Li
,
Ignavier Ng
,
Gongxu Luo
,
Biwei Huang
,
Guangyi Chen
,
Tongliang Liu
,
Bin Gu
,
Kun Zhang
ICLR
2024
Gene Regulatory Network Inference in the Presence of Dropouts: A Causal View
Haoyue Dai
,
Ignavier Ng
,
Gongxu Luo
,
Peter Spirtes
,
Petar Stojanov
,
Kun Zhang
AISTATS
2024
Local Causal Discovery with Linear Non-Gaussian Cyclic Models
Haoyue Dai
,
Ignavier Ng
,
Yujia Zheng
,
Zhengqing Gao
,
Kun Zhang
NeurIPS
2024
On the Parameter Identifiability of Partially Observed Linear Causal Models
Xinshuai Dong
,
Ignavier Ng
,
Biwei Huang
,
Yuewen Sun
,
Songyao Jin
,
Roberto Legaspi
,
Peter Spirtes
,
Kun Zhang
ICML
2024
Score-Based Causal Discovery of Latent Variable Causal Models
Ignavier Ng
,
Xinshuai Dong
,
Haoyue Dai
,
Biwei Huang
,
Peter Spirtes
,
Kun Zhang
CLeaR
2024
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Ignavier Ng
,
Biwei Huang
,
Kun Zhang
ICLR
2023
Generalized Precision Matrix for Scalable Estimation of Nonparametric Markov Networks
Yujia Zheng
,
Ignavier Ng
,
Yewen Fan
,
Kun Zhang
NeurIPS
2023
On the Identifiability of Sparse ICA Without Assuming Non-Gaussianity
Ignavier Ng
,
Yujia Zheng
,
Xinshuai Dong
,
Kun Zhang
AISTATS
2022
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
,
Sebastien Lachapelle
,
Nan Rosemary Ke
,
Simon Lacoste-Julien
,
Kun Zhang
AISTATS
2022
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
,
Kun Zhang
NeurIPS
2022
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
Erdun Gao
,
Ignavier Ng
,
Mingming Gong
,
Li Shen
,
Wei Huang
,
Tongliang Liu
,
Kun Zhang
,
Howard Bondell
ICLRW
2022
On the Identifiability of Nonlinear ICA with Unconditional Priors
Yujia Zheng
,
Ignavier Ng
,
Kun Zhang
NeurIPS
2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
,
Ignavier Ng
,
Kun Zhang
NeurIPS
2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
,
Ignavier Ng
,
Dong Gong
,
Yuhang Liu
,
Ehsan Abbasnejad
,
Mingming Gong
,
Kun Zhang
,
Javen Qinfeng Shi
NeurIPS
2021
Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions
Ignavier Ng
,
Yujia Zheng
,
Jiji Zhang
,
Kun Zhang
ICLR
2020
Causal Discovery with Reinforcement Learning
Shengyu Zhu
,
Ignavier Ng
,
Zhitang Chen
NeurIPS
2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
,
AmirEmad Ghassami
,
Kun Zhang