Nguyen, Vu

39 publications

AISTATS 2025 High Dimensional Bayesian Optimization Using Lasso Variable Selection Vu Viet Hoang, Hung The Tran, Sunil Gupta, Vu Nguyen
TMLR 2025 Meta-Learning Population-Based Methods for Reinforcement Learning Johannes Hog, Raghu Rajan, André Biedenkapp, Noor Awad, Frank Hutter, Vu Nguyen
ICLR 2025 SAVA: Scalable Learning-Agnostic Data Valuation Samuel Kessler, Tam Le, Vu Nguyen
AISTATS 2024 Adaptive Batch Sizes for Active Learning: A Probabilistic Numerics Approach Masaki Adachi, Satoshi Hayakawa, Martin Jørgensen, Xingchen Wan, Vu Nguyen, Harald Oberhauser, Michael A. Osborne
ACML 2024 Asian Conference on Machine Learning: Preface Vu Nguyen, Hsuan-Tien Lin
TMLR 2024 High-Dimensional Bayesian Optimization via Covariance Matrix Adaptation Strategy Lam Ngo, Huong Ha, Jeffrey Chan, Vu Nguyen, Hongyu Zhang
NeurIPS 2024 Rejection via Learning Density Ratios Alexander Soen, Hisham Husain, Philip Schulz, Vu Nguyen
NeurIPS 2023 Distributionally Robust Bayesian Optimization with $\varphi$-Divergences Hisham Husain, Vu Nguyen, Anton van den Hengel
TMLR 2023 Global Contrastive Learning for Long-Tailed Classification Thong Bach, Anh Tong, Truong Son Hy, Vu Nguyen, Thanh Nguyen-Tang
AAAI 2023 Mixed-Variable Black-Box Optimisation Using Value Proposal Trees Yan Zuo, Vu Nguyen, Amir Dezfouli, David Alexander, Benjamin Ward Muir, Iadine Chades
CVPR 2023 Zero-Shot Object Counting Jingyi Xu, Hieu Le, Vu Nguyen, Viresh Ranjan, Dimitris Samaras
JAIR 2022 Automated Reinforcement Learning (AutoRL): A Survey and Open Problems Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, Marius Lindauer
AutoML 2022 Bayesian Generational Population-Based Training Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, Michael Osborne
ICLRW 2022 Bayesian Generational Population-Based Training Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, Michael Osborne
CVPR 2022 Retrieval Augmented Classification for Long-Tail Visual Recognition Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Alan Blair, Chunhua Shen, Anton van den Hengel
UAI 2021 Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning Samuel Kessler, Vu Nguyen, Stefan Zohren, Stephen J. Roberts
ICML 2021 Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search Vu Nguyen, Tam Le, Makoto Yamada, Michael A. Osborne
ICML 2021 Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, Michael A. Osborne
NeurIPS 2021 Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL Jack Parker-Holder, Vu Nguyen, Shaan Desai, Stephen J Roberts
ICML 2020 Bayesian Optimisation over Multiple Continuous and Categorical Inputs Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A. Osborne, Stephen Roberts
NeurIPS 2020 Bayesian Optimization for Iterative Learning Vu Nguyen, Sebastian Schulze, Michael Osborne
NeurIPS 2020 Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective Vu Nguyen, Vaden Masrani, Rob Brekelmans, Michael Osborne, Frank Wood
ICML 2020 Knowing the What but Not the Where in Bayesian Optimization Vu Nguyen, Michael A. Osborne
NeurIPS 2020 Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits Jack Parker-Holder, Vu Nguyen, Stephen J. Roberts
ECCV 2018 A+D Net: Training a Shadow Detector with Adversarial Shadow Attenuation Hieu Le, Tomas F. Yago Vicente, Vu Nguyen, Minh Hoai, Dimitris Samaras
NeurIPS 2018 Algorithmic Assurance: An Active Approach to Algorithmic Testing Using Bayesian Optimisation Shivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh
ECML-PKDD 2018 Exploration Enhanced Expected Improvement for Bayesian Optimization Julian Berk, Vu Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh
IJCAI 2018 Label-Sensitive Task Grouping by Bayesian Nonparametric Approach for Multi-Task Multi-Label Learning Xiao Zhang, Wenzhong Li, Vu Nguyen, Fuzhen Zhuang, Hui Xiong, Sanglu Lu
JMLR 2017 Approximation Vector Machines for Large-Scale Online Learning Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Phung
IJCAI 2017 Discriminative Bayesian Nonparametric Clustering Vu Nguyen, Dinh Q. Phung, Trung Le, Hung Bui
IJCAI 2017 High Dimensional Bayesian Optimization Using Dropout Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, Alistair Shilton
ICML 2017 High Dimensional Bayesian Optimization with Elastic Gaussian Process Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, Svetha Venkatesh
ACML 2017 Regret for Expected Improvement over the Best-Observed Value and Stopping Condition Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh
ICCV 2017 Shadow Detection with Conditional Generative Adversarial Networks Vu Nguyen, Tomas F. Yago Vicente, Maozheng Zhao, Minh Hoai, Dimitris Samaras
ACML 2016 A Bayesian Nonparametric Approach for Multi-Label Classification Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh
UAI 2016 Budgeted Semi-Supervised Support Vector Machine Trung Le, Phuong Duong, Mi Dinh, Tu Dinh Nguyen, Vu Nguyen, Dinh Q. Phung
NeurIPS 2016 Dual Space Gradient Descent for Online Learning Trung Le, Tu Nguyen, Vu Nguyen, Dinh Phung
ACML 2016 Multiple Kernel Learning with Data Augmentation Khanh Nguyen, Trung Le, Vu Nguyen, Tu Nguyen, Dinh Phung
AISTATS 2016 Nonparametric Budgeted Stochastic Gradient Descent Trung Le, Vu Nguyen, Tu Dinh Nguyen, Dinh Q. Phung