Nickel, Maximilian

22 publications

ICML 2025 Representative Ranking for Deliberation in the Public Sphere Manon Revel, Smitha Milli, Tyler Lu, Jamelle Watson-Daniels, Maximilian Nickel
ICMLW 2024 Collaborative Learning Under Strategic Behavior: Mechanisms for Eliciting Feedback in Principal-Agent Bandit Games Ramakrishnan K, Arpit Agarwal, Lakshminarayanan Subramanian, Maximilian Nickel
ICLR 2024 Generalized Schrödinger Bridge Matching Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, Ricky T. Q. Chen
NeurIPS 2024 No Free Delivery Service: Epistemic Limits of Passive Data Collection in Complex Social Systems Maximilian Nickel
ICLR 2023 Flow Matching for Generative Modeling Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, Matthew Le
ICML 2023 Hyperbolic Image-Text Representations Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, Shanmukha Ramakrishna Vedantam
ICLRW 2023 Hyperbolic Image-Text Representations Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, Shanmukha Ramakrishna Vedantam
ICML 2023 Neural FIM for Learning Fisher Information Metrics from Point Cloud Data Oluwadamilola Fasina, Guillaume Huguet, Alexander Tong, Yanlei Zhang, Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
ICML 2023 On Kinetic Optimal Probability Paths for Generative Models Neta Shaul, Ricky T. Q. Chen, Maximilian Nickel, Matthew Le, Yaron Lipman
NeurIPS 2022 Semi-Discrete Normalizing Flows Through Differentiable Tessellation Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
ICLRW 2022 Semi-Discrete Normalizing Flows Through Differentiable Voronoi Tessellation Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
ICLR 2021 Learning Neural Event Functions for Ordinary Differential Equations Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
NeurIPS 2021 Moser Flow: Divergence-Based Generative Modeling on Manifolds Noam Rozen, Aditya Grover, Maximilian Nickel, Yaron Lipman
ICLR 2021 Neural Spatio-Temporal Point Processes Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
NeurIPS 2020 Riemannian Continuous Normalizing Flows Emile Mathieu, Maximilian Nickel
NeurIPS 2019 Hyperbolic Graph Neural Networks Qi Liu, Maximilian Nickel, Douwe Kiela
AAAI 2016 Holographic Embeddings of Knowledge Graphs Maximilian Nickel, Lorenzo Rosasco, Tomaso A. Poggio
NeurIPS 2014 Reducing the Rank in Relational Factorization Models by Including Observable Patterns Maximilian Nickel, Xueyan Jiang, Volker Tresp
ECML-PKDD 2013 An Analysis of Tensor Models for Learning on Structured Data Maximilian Nickel, Volker Tresp
ECML-PKDD 2013 Tensor Factorization for Multi-Relational Learning Maximilian Nickel, Volker Tresp
ECML-PKDD 2012 Scalable Relation Prediction Exploiting Both Intrarelational Correlation and Contextual Information Xueyan Jiang, Volker Tresp, Yi Huang, Maximilian Nickel, Hans-Peter Kriegel
ICML 2011 A Three-Way Model for Collective Learning on Multi-Relational Data Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel