Nielsen, Didrik

9 publications

TMLR 2022 Diffusion Models for Video Prediction and Infilling Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, Andrea Dittadi
NeurIPSW 2022 Diffusion Models for Video Prediction and Infilling Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, Andrea Dittadi
NeurIPSW 2022 Few-Shot Diffusion Models Giorgio Giannone, Didrik Nielsen, Ole Winther
AISTATS 2021 Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC Priyank Jaini, Didrik Nielsen, Max Welling
NeurIPS 2021 Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, Max Welling
NeurIPS 2020 Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow Didrik Nielsen, Ole Winther
NeurIPS 2020 SurVAE Flows: Surjections to Bridge the Gap Between VAEs and Flows Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, Max Welling
ICML 2018 Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, Akash Srivastava
NeurIPS 2018 SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, Mohammad Emtiyaz Khan