ML Anthology
Authors
Search
About
Nijkamp, Erik
10 publications
ICLR
2023
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Erik Nijkamp
,
Bo Pang
,
Hiroaki Hayashi
,
Lifu Tu
,
Huan Wang
,
Yingbo Zhou
,
Silvio Savarese
,
Caiming Xiong
NeurIPSW
2022
Generating High Fidelity Synthetic Data via Coreset Selection and Entropic Regularization
Omead Pooladzandi
,
Pasha Khosravi
,
Erik Nijkamp
,
Baharan Mirzasoleiman
NeurIPS
2022
Learning Probabilistic Models from Generator Latent Spaces with Hat EBM
Mitch Hill
,
Erik Nijkamp
,
Jonathan Mitchell
,
Bo Pang
,
Song-Chun Zhu
ICLR
2022
MCMC Should Mix: Learning Energy-Based Model with Neural Transport Latent Space MCMC
Erik Nijkamp
,
Ruiqi Gao
,
Pavel Sountsov
,
Srinivas Vasudevan
,
Bo Pang
,
Song-Chun Zhu
,
Ying Nian Wu
NeurIPS
2020
Learning Latent Space Energy-Based Prior Model
Bo Pang
,
Tian Han
,
Erik Nijkamp
,
Song-Chun Zhu
,
Ying Nian Wu
ECCV
2020
Learning Multi-Layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
,
Bo Pang
,
Tian Han
,
Linqi Zhou
,
Song-Chun Zhu
,
Ying Nian Wu
AAAI
2020
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
,
Mitch Hill
,
Tian Han
,
Song-Chun Zhu
,
Ying Nian Wu
NeurIPSW
2020
Semi-Supervised Learning by Latent Space Energy-Based Model of Symbol-Vector Coupling
Bo Pang
,
Erik Nijkamp
,
Jiali Cui
,
Tian Han
,
Ying Nian Wu
NeurIPS
2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
,
Mitch Hill
,
Song-Chun Zhu
,
Ying Nian Wu
CVPR
2017
Generative Hierarchical Learning of Sparse FRAME Models
Jianwen Xie
,
Yifei Xu
,
Erik Nijkamp
,
Ying Nian Wu
,
Song-Chun Zhu