ML Anthology
Authors
Search
About
Niles-Weed, Jonathan
22 publications
AISTATS
2025
Conditional Simulation via Entropic Optimal Transport: Toward Non-Parametric Estimation of Conditional Brenier Maps
Ricardo Baptista
,
Aram-Alexandre Pooladian
,
Michael Brennan
,
Youssef Marzouk
,
Jonathan Niles-Weed
ICML
2025
Trajectory Inference with Smooth Schrödinger Bridges
Wanli Hong
,
Yuliang Shi
,
Jonathan Niles-Weed
JMLR
2024
Existence and Minimax Theorems for Adversarial Surrogate Risks in Binary Classification
Natalie S. Frank
,
Jonathan Niles-Weed
NeurIPS
2024
Learning Elastic Costs to Shape Monge Displacements
Michal Klein
,
Aram-Alexandre Pooladian
,
Pierre Ablin
,
Eugène Ndiaye
,
Jonathan Niles-Weed
,
Marco Cuturi
NeurIPS
2024
Progressive Entropic Optimal Transport Solvers
Parnian Kassraie
,
Aram-Alexandre Pooladian
,
Michal Klein
,
James Thornton
,
Jonathan Niles-Weed
,
Marco Cuturi
COLT
2023
Asymptotic Confidence Sets for Random Linear Programs
Shuyu Liu
,
Florentina Bunea
,
Jonathan Niles-Weed
ICML
2023
Minimax Estimation of Discontinuous Optimal Transport Maps: The Semi-Discrete Case
Aram-Alexandre Pooladian
,
Vincent Divol
,
Jonathan Niles-Weed
ICML
2023
Perturbation Analysis of Neural Collapse
Tom Tirer
,
Haoxiang Huang
,
Jonathan Niles-Weed
COLT
2023
Sharp Thresholds in Inference of Planted Subgraphs
Elchanan Mossel
,
Jonathan Niles-Weed
,
Youngtak Sohn
,
Nike Sun
,
Ilias Zadik
NeurIPS
2023
The Adversarial Consistency of Surrogate Risks for Binary Classification
Natalie Frank
,
Jonathan Niles-Weed
NeurIPS
2022
Asymptotics of Smoothed Wasserstein Distances in the Small Noise Regime
Yunzi Ding
,
Jonathan Niles-Weed
ICML
2022
Debiaser Beware: Pitfalls of Centering Regularized Transport Maps
Aram-Alexandre Pooladian
,
Marco Cuturi
,
Jonathan Niles-Weed
ICML
2022
Deep Probability Estimation
Sheng Liu
,
Aakash Kaku
,
Weicheng Zhu
,
Matan Leibovich
,
Sreyas Mohan
,
Boyang Yu
,
Haoxiang Huang
,
Laure Zanna
,
Narges Razavian
,
Jonathan Niles-Weed
,
Carlos Fernandez-Granda
NeurIPS
2022
Distributional Convergence of the Sliced Wasserstein Process
Jiaqi Xi
,
Jonathan Niles-Weed
COLT
2021
It Was “all” for “nothing”: Sharp Phase Transitions for Noiseless Discrete Channels
Jonathan Niles-Weed
,
Ilias Zadik
COLT
2021
Streaming K-PCA: Efficient Guarantees for Oja’s Algorithm, Beyond Rank-One Updates
De Huang
,
Jonathan Niles-Weed
,
Rachel Ward
NeurIPS
2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
,
Jonathan Niles-Weed
,
Narges Razavian
,
Carlos Fernandez-Granda
ICML
2020
Supervised Quantile Normalization for Low Rank Matrix Factorization
Marco Cuturi
,
Olivier Teboul
,
Jonathan Niles-Weed
,
Jean-Philippe Vert
NeurIPS
2020
The All-or-Nothing Phenomenon in Sparse Tensor PCA
Jonathan Niles-Weed
,
Ilias Zadik
NeurIPS
2019
Massively Scalable Sinkhorn Distances via the Nyström Method
Jason Altschuler
,
Francis Bach
,
Alessandro Rudi
,
Jonathan Niles-Weed
NeurIPS
2019
Statistical Bounds for Entropic Optimal Transport: Sample Complexity and the Central Limit Theorem
Gonzalo Mena
,
Jonathan Niles-Weed
NeurIPS
2017
Near-Linear Time Approximation Algorithms for Optimal Transport via Sinkhorn Iteration
Jason Altschuler
,
Jonathan Niles-Weed
,
Philippe Rigollet