ML Anthology
Authors
Search
About
Oberst, Michael
12 publications
TMLR
2025
Expert Routing with Synthetic Data for Domain Incremental Learning
Yewon Byun
,
Sanket Vaibhav Mehta
,
Saurabh Garg
,
Emma Strubell
,
Michael Oberst
,
Bryan Wilder
,
Zachary Chase Lipton
UAI
2025
Just Trial Once: Ongoing Causal Validation of Machine Learning Models
Jacob M. Chen
,
Michael Oberst
AISTATS
2024
Auditing Fairness Under Unobserved Confounding
Yewon Byun
,
Dylan Sam
,
Michael Oberst
,
Zachary Lipton
,
Bryan Wilder
AISTATS
2024
Benchmarking Observational Studies with Experimental Data Under Right-Censoring
Ilker Demirel
,
Edward De Brouwer
,
Zeshan M Hussain
,
Michael Oberst
,
Anthony A Philippakis
,
David Sontag
AISTATS
2023
Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions
Zeshan Hussain
,
Ming-Chieh Shih
,
Michael Oberst
,
Ilker Demirel
,
David Sontag
NeurIPS
2022
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Nikolaj Thams
,
Michael Oberst
,
David Sontag
ICMLW
2022
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Michael Oberst
,
Nikolaj Thams
,
David Sontag
NeurIPS
2022
Falsification Before Extrapolation in Causal Effect Estimation
Zeshan M Hussain
,
Michael Oberst
,
Ming-Chieh Shih
,
David Sontag
NeurIPS
2021
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance
Justin Lim
,
Christina X Ji
,
Michael Oberst
,
Saul Blecker
,
Leora Horwitz
,
David Sontag
ICML
2021
Regularizing Towards Causal Invariance: Linear Models with Proxies
Michael Oberst
,
Nikolaj Thams
,
Jonas Peters
,
David Sontag
AISTATS
2020
Characterization of Overlap in Observational Studies
Michael Oberst
,
Fredrik Johansson
,
Dennis Wei
,
Tian Gao
,
Gabriel Brat
,
David Sontag
,
Kush Varshney
ICML
2019
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models
Michael Oberst
,
David Sontag