ML Anthology
Authors
Search
About
Ortner, Ronald
27 publications
IJCAI
2023
Autonomous Exploration for Navigating in MDPs Using Blackbox RL Algorithms
Pratik Gajane
,
Peter Auer
,
Ronald Ortner
TMLR
2023
Regret Bounds for Satisficing in Multi-Armed Bandit Problems
Thomas Michel
,
Hossein Hajiabolhassan
,
Ronald Ortner
JAIR
2020
Regret Bounds for Reinforcement Learning via Markov Chain Concentration
Ronald Ortner
COLT
2019
Achieving Optimal Dynamic Regret for Non-Stationary Bandits Without Prior Information
Peter Auer
,
Yifang Chen
,
Pratik Gajane
,
Chung-Wei Lee
,
Haipeng Luo
,
Ronald Ortner
,
Chen-Yu Wei
COLT
2019
Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes
Peter Auer
,
Pratik Gajane
,
Ronald Ortner
NeurIPS
2019
Regret Bounds for Learning State Representations in Reinforcement Learning
Ronald Ortner
,
Matteo Pirotta
,
Alessandro Lazaric
,
Ronan Fruit
,
Odalric-Ambrym Maillard
UAI
2019
Variational Regret Bounds for Reinforcement Learning
Ronald Ortner
,
Pratik Gajane
,
Peter Auer
ICML
2018
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning
Ronan Fruit
,
Matteo Pirotta
,
Alessandro Lazaric
,
Ronald Ortner
ALT
2016
Algorithmic Learning Theory - 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings
Ronald Ortner
,
Hans Ulrich Simon
,
Sandra Zilles
AISTATS
2016
Improved Learning Complexity in Combinatorial Pure Exploration Bandits
Victor Gabillon
,
Alessandro Lazaric
,
Mohammad Ghavamzadeh
,
Ronald Ortner
,
Peter L. Bartlett
AISTATS
2016
Pareto Front Identification from Stochastic Bandit Feedback
Peter Auer
,
Chao-Kai Chiang
,
Ronald Ortner
,
Madalina M. Drugan
ICML
2015
Improved Regret Bounds for Undiscounted Continuous Reinforcement Learning
K. Lakshmanan
,
Ronald Ortner
,
Daniil Ryabko
ALT
2014
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
Ronald Ortner
,
Odalric-Ambrym Maillard
,
Daniil Ryabko
AISTATS
2013
Competing with an Infinite Set of Models in Reinforcement Learning
Phuong Nguyen
,
Odalric-Ambrym Maillard
,
Daniil Ryabko
,
Ronald Ortner
ICML
2013
Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning
Odalric-Ambrym Maillard
,
Phuong Nguyen
,
Ronald Ortner
,
Daniil Ryabko
NeurIPS
2012
Online Regret Bounds for Undiscounted Continuous Reinforcement Learning
Ronald Ortner
,
Daniil Ryabko
ALT
2012
Regret Bounds for Restless Markov Bandits
Ronald Ortner
,
Daniil Ryabko
,
Peter Auer
,
Rémi Munos
NeurIPS
2011
PAC-Bayesian Analysis of Contextual Bandits
Yevgeny Seldin
,
Peter Auer
,
John S. Shawe-taylor
,
Ronald Ortner
,
François Laviolette
JMLR
2010
Near-Optimal Regret Bounds for Reinforcement Learning
Thomas Jaksch
,
Ronald Ortner
,
Peter Auer
NeurIPS
2008
Near-Optimal Regret Bounds for Reinforcement Learning
Peter Auer
,
Thomas Jaksch
,
Ronald Ortner
ALT
2008
Online Regret Bounds for Markov Decision Processes with Deterministic Transitions
Ronald Ortner
MLJ
2007
A New PAC Bound for Intersection-Closed Concept Classes
Peter Auer
,
Ronald Ortner
COLT
2007
Improved Rates for the Stochastic Continuum-Armed Bandit Problem
Peter Auer
,
Ronald Ortner
,
Csaba Szepesvári
ALT
2007
Pseudometrics for State Aggregation in Average Reward Markov Decision Processes
Ronald Ortner
NeurIPS
2006
Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning
Peter Auer
,
Ronald Ortner
ECML-PKDD
2004
A Boosting Approach to Multiple Instance Learning
Peter Auer
,
Ronald Ortner
COLT
2004
A New PAC Bound for Intersection-Closed Concept Classes
Peter Auer
,
Ronald Ortner