Osawa, Kazuki

5 publications

TMLR 2023 Improving Continual Learning by Accurate Gradient Reconstructions of the past Erik Daxberger, Siddharth Swaroop, Kazuki Osawa, Rio Yokota, Richard E Turner, José Miguel Hernández-Lobato, Mohammad Emtiyaz Khan
ICML 2023 Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias Ryo Karakida, Tomoumi Takase, Tomohiro Hayase, Kazuki Osawa
LoG 2022 Neural Graph Databases Maciej Besta, Patrick Iff, Florian Scheidl, Kazuki Osawa, Nikoli Dryden, Michal Podstawski, Tiancheng Chen, Torsten Hoefler
NeurIPS 2020 Understanding Approximate Fisher Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks Ryo Karakida, Kazuki Osawa
NeurIPS 2019 Practical Deep Learning with Bayesian Principles Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio Yokota