ML Anthology
Authors
Search
About
Pakman, Ari
13 publications
AISTATS
2025
Bayesian Circular Regression with Von Mises Quasi-Processes
Yarden Cohen
,
Alexandre Khae Wu Navarro
,
Jes Frellsen
,
Richard E. Turner
,
Raziel Riemer
,
Ari Pakman
ICML
2025
Clustering via Self-Supervised Diffusion
Roy Uziel
,
Irit Chelly
,
Oren Freifeld
,
Ari Pakman
AISTATS
2025
Consistent Amortized Clustering via Generative Flow Networks
Irit Chelly
,
Roy Uziel
,
Oren Freifeld
,
Ari Pakman
ICMLW
2024
Amortized Probabilistic Detection of Communities in Graphs
Yueqi Wang
,
Yoonho Lee
,
Pallab Basu
,
Juho Lee
,
Yee Whye Teh
,
Liam Paninski
,
Ari Pakman
ICMLW
2024
Von Mises Quasi-Processes for Bayesian Circular Regression
Yarden Cohen
,
Alexandre Khae Wu Navarro
,
Jes Frellsen
,
Richard E. Turner
,
Raziel Riemer
,
Ari Pakman
NeurIPS
2021
Estimating the Unique Information of Continuous Variables
Ari Pakman
,
Amin Nejatbakhsh
,
Dar Gilboa
,
Abdullah Makkeh
,
Luca Mazzucato
,
Michael Wibral
,
Elad Schneidman
ICML
2020
Neural Clustering Processes
Ari Pakman
,
Yueqi Wang
,
Catalin Mitelut
,
Jinhyung Lee
,
Liam Paninski
NeurIPSW
2019
Spike Sorting Using the Neural Clustering Process
Yueqi Wang
,
Ari Pakman
,
Catalin Mitelut
,
JinHyung Lee
,
Liam Paninski
ICML
2017
Stochastic Bouncy Particle Sampler
Ari Pakman
,
Dar Gilboa
,
David Carlson
,
Liam Paninski
ICML
2016
Partition Functions from Rao-Blackwellized Tempered Sampling
David Carlson
,
Patrick Stinson
,
Ari Pakman
,
Liam Paninski
UAI
2016
Taming the Noise in Reinforcement Learning via Soft Updates
Roy Fox
,
Ari Pakman
,
Naftali Tishby
NeurIPS
2013
Auxiliary-Variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions
Ari Pakman
,
Liam Paninski
NeurIPS
2013
Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits
Ben Shababo
,
Brooks Paige
,
Ari Pakman
,
Liam Paninski