Papamarkou, Theodore

10 publications

NeurIPS 2025 Copresheaf Topological Neural Networks: A Generalized Deep Learning Framework Mustafa Hajij, Lennart Bastian, Sarah Osentoski, Hardik Kabaria, John L. Davenport, Sheik Dawood, Balaji Cherukuri, Joseph G. Kocheemoolayil, Nastaran Shahmansouri, Adrian Lew, Theodore Papamarkou, Tolga Birdal
NeurIPS 2025 Spatial-Aware Decision-Making with Ring Attractors in Reinforcement Learning Systems Marcos Negre Saura, Richard Allmendinger, Wei Pan, Theodore Papamarkou
ICML 2024 Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks? Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, David Rügamer
ICML 2024 Position: Bayesian Deep Learning Is Needed in the Age of Large-Scale AI Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A Osborne, Tim G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, Ruqi Zhang
ICML 2024 Position: Topological Deep Learning Is the New Frontier for Relational Learning Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guowei Wei, Ghada Zamzmi
MLOSS 2024 TopoX: A Suite of Python Packages for Machine Learning on Topological Domains Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane
IJCAI 2024 Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry (Extended Abstract) Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer
ECML-PKDD 2023 Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer
JMLR 2020 Wide Neural Networks with Bottlenecks Are Deep Gaussian Processes Devanshu Agrawal, Theodore Papamarkou, Jacob Hinkle
AISTATS 2018 Multiphase MCMC Sampling for Parameter Inference in Nonlinear Ordinary Differential Equations Alan Lazarus, Dirk Husmeier, Theodore Papamarkou