Park, Seohong

19 publications

ICML 2025 Flow Q-Learning Seohong Park, Qiyang Li, Sergey Levine
NeurIPS 2025 Horizon Reduction Makes RL Scalable Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, Sergey Levine
ICLR 2025 OGBench: Benchmarking Offline Goal-Conditioned RL Seohong Park, Kevin Frans, Benjamin Eysenbach, Sergey Levine
CoRL 2025 Steering Your Diffusion Policy with Latent Space Reinforcement Learning Andrew Wagenmaker, Yunchu Zhang, Mitsuhiko Nakamoto, Seohong Park, Waleed Yagoub, Anusha Nagabandi, Abhishek Gupta, Sergey Levine
ICML 2024 Foundation Policies with Hilbert Representations Seohong Park, Tobias Kreiman, Sergey Levine
NeurIPS 2024 Is Value Learning Really the Main Bottleneck in Offline RL? Seohong Park, Kevin Frans, Sergey Levine, Aviral Kumar
ICMLW 2024 Is Value Learning Really the Main Bottleneck in Offline RL? Seohong Park, Kevin Frans, Sergey Levine, Aviral Kumar
ICLR 2024 METRA: Scalable Unsupervised RL with Metric-Aware Abstraction Seohong Park, Oleh Rybkin, Sergey Levine
ICML 2024 Unsupervised Zero-Shot Reinforcement Learning via Functional Reward Encodings Kevin Frans, Seohong Park, Pieter Abbeel, Sergey Levine
ICML 2023 Controllability-Aware Unsupervised Skill Discovery Seohong Park, Kimin Lee, Youngwoon Lee, Pieter Abbeel
NeurIPS 2023 HIQL: Offline Goal-Conditioned RL with Latent States as Actions Seohong Park, Dibya Ghosh, Benjamin Eysenbach, Sergey Levine
NeurIPSW 2023 METRA: Scalable Unsupervised RL with Metric-Aware Abstraction Seohong Park, Oleh Rybkin, Sergey Levine
NeurIPSW 2023 METRA: Scalable Unsupervised RL with Metric-Aware Abstraction Seohong Park, Oleh Rybkin, Sergey Levine
ICMLW 2023 Offline Goal-Conditioned RL with Latent States as Actions Seohong Park, Dibya Ghosh, Benjamin Eysenbach, Sergey Levine
ICML 2023 Predictable MDP Abstraction for Unsupervised Model-Based RL Seohong Park, Sergey Levine
NeurIPS 2022 Constrained GPI for Zero-Shot Transfer in Reinforcement Learning Jaekyeom Kim, Seohong Park, Gunhee Kim
ICLR 2022 Lipschitz-Constrained Unsupervised Skill Discovery Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, Gunhee Kim
NeurIPS 2021 Time Discretization-Invariant Safe Action Repetition for Policy Gradient Methods Seohong Park, Jaekyeom Kim, Gunhee Kim
ICML 2021 Unsupervised Skill Discovery with Bottleneck Option Learning Jaekyeom Kim, Seohong Park, Gunhee Kim