Parr, Ronald

52 publications

NeurIPS 2025 A Unifying View of Linear Function Approximation in Off-Policy RL Through Matrix Splitting and Preconditioning Zechen Wu, Amy Greenwald, Ronald Parr
NeurIPS 2024 Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer Gottesman, Ronald Parr, Michael L. Littman, George Konidaris
ICMLW 2024 Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy Cameron Allen, Aaron T. Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer Gottesman, Ronald Parr, Michael Littman, George Konidaris
ICML 2024 Position: Amazing Things Come from Having Many Good Models Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo Seltzer, Ronald Parr, Jiachang Liu, Srikar Katta, Jon Donnelly, Harry Chen, Zachery Boner
NeurIPS 2024 Using Noise to Infer Aspects of Simplicity Without Learning Zachery Boner, Harry Chen, Lesia Semenova, Ronald Parr, Cynthia Rudin
NeurIPS 2023 A Path to Simpler Models Starts with Noise Lesia Semenova, Harry Chen, Ronald Parr, Cynthia Rudin
ICML 2021 Policy Caches with Successor Features Mark Nemecek, Ronald Parr
AAAI 2016 Distance Minimization for Reward Learning from Scored Trajectories Benjamin Burchfiel, Carlo Tomasi, Ronald Parr
AAAI 2016 Efficient PAC-Optimal Exploration in Concurrent, Continuous State MDPs with Delayed Updates Jason Pazis, Ronald Parr
AAAI 2013 PAC Optimal Exploration in Continuous Space Markov Decision Processes Jason Pazis, Ronald Parr
AAAI 2013 Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming Jason Pazis, Ronald Parr
AAAI 2012 Computing Optimal Strategies to Commit to in Stochastic Games Joshua Letchford, Liam MacDermed, Vincent Conitzer, Ronald Parr, Charles L. Isbell Jr.
ICML 2012 Greedy Algorithms for Sparse Reinforcement Learning Christopher Painter-Wakefield, Ronald Parr
UAI 2012 Value Function Approximation in Noisy Environments Using Locally Smoothed Regularized Approximate Linear Programs Gavin Taylor, Ronald Parr
ICML 2011 Generalized Value Functions for Large Action Sets Jason Pazis, Ronald Parr
AAAI 2011 Non-Parametric Approximate Linear Programming for MDPs Jason Pazis, Ronald Parr
IJCAI 2011 Security Games with Multiple Attacker Resources Dmytro Korzhyk, Vincent Conitzer, Ronald Parr
AAAI 2010 Complexity of Computing Optimal Stackelberg Strategies in Security Resource Allocation Games Dmytro Korzhyk, Vincent Conitzer, Ronald Parr
ICML 2010 Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes Marek Petrik, Gavin Taylor, Ronald Parr, Shlomo Zilberstein
NeurIPS 2010 Linear Complementarity for Regularized Policy Evaluation and Improvement Jeffrey Johns, Christopher Painter-wakefield, Ronald Parr
ICML 2009 Kernelized Value Function Approximation for Reinforcement Learning Gavin Taylor, Ronald Parr
IJCAI 2009 Multi-Step Multi-Sensor Hider-Seeker Games Erik Halvorson, Vincent Conitzer, Ronald Parr
ICML 2008 An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, Michael L. Littman
ICML 2007 Analyzing Feature Generation for Value-Function Approximation Ronald Parr, Christopher Painter-Wakefield, Lihong Li, Michael L. Littman
AAAI 2007 Point-Based Policy Iteration Shihao Ji, Ronald Parr, Hui Li, Xuejun Liao, Lawrence Carin
UAI 2007 UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, Vancouver, BC, Canada, July 19-22, 2007 Ronald Parr, Linda C. van der Gaag
UAI 2006 Efficient Selection of Disambiguating Actions for Stereo Vision Monika Schaeffer, Ronald Parr
NeurIPS 2005 Hierarchical Linear/Constant Time SLAM Using Particle Filters for Dense Maps Austin I. Eliazar, Ronald Parr
ICML 2004 Learning Probabilistic Motion Models for Mobile Robots Austin I. Eliazar, Ronald Parr
IJCAI 2003 Approximate Policy Iteration Using Large-Margin Classifiers Michail G. Lagoudakis, Ronald Parr
IJCAI 2003 DP-SLAM: Fast, Robust Simultaneous Localization and Mapping Without Predetermined Landmarks Austin I. Eliazar, Ronald Parr
JAIR 2003 Efficient Solution Algorithms for Factored MDPs Carlos Guestrin, Daphne Koller, Ronald Parr, Shobha Venkataraman
JMLR 2003 Least-Squares Policy Iteration Michail G. Lagoudakis, Ronald Parr
ICML 2003 Reinforcement Learning as Classification: Leveraging Modern Classifiers Michail G. Lagoudakis, Ronald Parr
ICML 2002 Coordinated Reinforcement Learning Carlos Guestrin, Michail G. Lagoudakis, Ronald Parr
NeurIPS 2002 Learning in Zero-Sum Team Markov Games Using Factored Value Functions Michail G. Lagoudakis, Ronald Parr
UAI 2002 Value Function Approximation in Zero-Sum Markov Games Michail G. Lagoudakis, Ronald Parr
UAI 2001 Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms Uri Lerner, Ronald Parr
IJCAI 2001 Max-Norm Projections for Factored MDPs Carlos Guestrin, Daphne Koller, Ronald Parr
NeurIPS 2001 Model-Free Least-Squares Policy Iteration Michail G. Lagoudakis, Ronald Parr
NeurIPS 2001 Multiagent Planning with Factored MDPs Carlos Guestrin, Daphne Koller, Ronald Parr
AAAI 2000 Bayesian Fault Detection and Diagnosis in Dynamic Systems Uri Lerner, Ronald Parr, Daphne Koller, Gautam Biswas
AAAI 2000 Making Rational Decisions Using Adaptive Utility Elicitation Urszula Chajewska, Daphne Koller, Ronald Parr
UAI 2000 Policy Iteration for Factored MDPs Daphne Koller, Ronald Parr
IJCAI 1999 Computing Factored Value Functions for Policies in Structured MDPs Daphne Koller, Ronald Parr
NeurIPS 1999 Policy Search via Density Estimation Andrew Y. Ng, Ronald Parr, Daphne Koller
NeurIPS 1999 Reinforcement Learning Using Approximate Belief States Andres C. Rodriguez, Ronald Parr, Daphne Koller
UAI 1998 Flexible Decomposition Algorithms for Weakly Coupled Markov Decision Problems Ronald Parr
NeurIPS 1997 Generalized Prioritized Sweeping David Andre, Nir Friedman, Ronald Parr
NeurIPS 1997 Reinforcement Learning with Hierarchies of Machines Ronald Parr, Stuart J. Russell
IJCAI 1995 Approximating Optimal Policies for Partially Observable Stochastic Domains Ronald Parr, Stuart Russell
IJCAI 1993 Provably Bounded Optimal Agents Stuart J. Russell, Devika Subramanian, Ronald Parr