ML Anthology
Authors
Search
About
Pauwels, Edouard
14 publications
TMLR
2025
A Second-Order-like Optimizer with Adaptive Gradient Scaling for Deep Learning
Jerome Bolte
,
Ryan Boustany
,
Edouard Pauwels
,
Andrei Purica
NeurIPS
2025
Learning Theory for Kernel Bilevel Optimization
Fares El Khoury
,
Edouard Pauwels
,
Samuel Vaiter
,
Michael Arbel
NeurIPS
2024
Derivatives of Stochastic Gradient Descent in Parametric Optimization
Franck Iutzeler
,
Edouard Pauwels
,
Samuel Vaiter
ICLR
2023
On the Complexity of Nonsmooth Automatic Differentiation
Jerome Bolte
,
Ryan Boustany
,
Edouard Pauwels
,
Béatrice Pesquet-Popescu
NeurIPS
2023
One-Step Differentiation of Iterative Algorithms
Jerome Bolte
,
Edouard Pauwels
,
Samuel Vaiter
NeurIPS
2022
Automatic Differentiation of Nonsmooth Iterative Algorithms
Jerome Bolte
,
Edouard Pauwels
,
Samuel Vaiter
JMLR
2021
An Inertial Newton Algorithm for Deep Learning
Camille Castera
,
Jérôme Bolte
,
Cédric Févotte
,
Edouard Pauwels
NeurIPS
2021
Nonsmooth Implicit Differentiation for Machine-Learning and Optimization
Jérôme Bolte
,
Tam Le
,
Edouard Pauwels
,
Tony Silveti-Falls
NeurIPS
2021
Numerical Influence of ReLU’(0) on Backpropagation
David Bertoin
,
Jérôme Bolte
,
Sébastien Gerchinovitz
,
Edouard Pauwels
NeurIPS
2021
Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification
Tong Chen
,
Jean B Lasserre
,
Victor Magron
,
Edouard Pauwels
NeurIPS
2020
A Mathematical Model for Automatic Differentiation in Machine Learning
Jérôme Bolte
,
Edouard Pauwels
NeurIPS
2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
,
Jean B Lasserre
,
Victor Magron
,
Edouard Pauwels
NeurIPS
2018
Relating Leverage Scores and Density Using Regularized Christoffel Functions
Edouard Pauwels
,
Francis Bach
,
Jean-Philippe Vert
NeurIPS
2016
Sorting Out Typicality with the Inverse Moment Matrix SOS Polynomial
Edouard Pauwels
,
Jean B Lasserre