Pazzani, Michael J.

44 publications

AAAI 2022 Expert-Informed, User-Centric Explanations for Machine Learning Michael J. Pazzani, Severine Soltani, Robert Kaufman, Samson Qian, Albert Hsiao
ICML 2000 Characterizing Model Erros and Differences Stephen D. Bay, Michael J. Pazzani
MLJ 1999 A Principal Components Approach to Combining Regression Estimates Christopher J. Merz, Michael J. Pazzani
AAAI 1998 Knowledge-Based Avoidance of Drug-Resistant HIV Mutants Richard H. Lathrop, Nicholas R. Steffen, Miriam P. Raphael, Sophia Deeds-Rubin, Michael J. Pazzani, Paul J. Cimoch, Darryl M. See, Jeremiah G. Tilles
ICML 1998 Learning Collaborative Information Filters Daniel Billsus, Michael J. Pazzani
AISTATS 1997 Combining Neural Network Regression Estimates Using Principal Components Christopher J. Merz, Michael J. Pazzani
MLJ 1997 Learning and Revising User Profiles: The Identification of Interesting Web Sites Michael J. Pazzani, Daniel Billsus
MLJ 1997 On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss Pedro M. Domingos, Michael J. Pazzani
ICML 1996 Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier Pedro M. Domingos, Michael J. Pazzani
NeurIPS 1996 Combining Neural Network Regression Estimates with Regularized Linear Weights Christopher J. Merz, Michael J. Pazzani
MLJ 1996 Error Reduction Through Learning Multiple Descriptions Kamal M. Ali, Michael J. Pazzani
MLJ 1996 Review of "Inductive Logic Programming: Techniques and Applications" by Nada Lavrac, Saso Dzeroski Michael J. Pazzani
AAAI 1996 Simple Bayesian Classifiers Do Not Assume Independence Pedro M. Domingos, Michael J. Pazzani
AAAI 1996 Syskill & Webert: Identifying Interesting Web Sites Michael J. Pazzani, Jack Muramatsu, Daniel Billsus
ICML 1995 A Lexical Based Semantic Bias for Theory Revision Clifford Brunk, Michael J. Pazzani
ICML 1995 Learning Hierarchies from Ambiguous Natural Language Data Takefumi Yamazaki, Michael J. Pazzani, Christopher J. Merz
AISTATS 1995 Learning Multiple Relational Rule-Based Models Kamal M. Ali, Clifford Brunk, Michael J. Pazzani
AISTATS 1995 Searching for Dependencies in Bayesian Classifiers Michael J. Pazzani
JAIR 1994 Exploring the Decision Forest: An Empirical Investigation of Occam's Razor in Decision Tree Induction Patrick M. Murphy, Michael J. Pazzani
MLJ 1994 Guest Editor's Introduction Michael J. Pazzani
ICML 1994 Reducing Misclassification Costs Michael J. Pazzani, Christopher J. Merz, Patrick M. Murphy, Kamal M. Ali, Timothy Hume, Clifford Brunk
ICML 1994 Revision of Production System Rule-Bases Patrick M. Murphy, Michael J. Pazzani
IJCAI 1993 A Methodology for Evaluating Theory Revision Systems: Results with Audrey II James Wogulis, Michael J. Pazzani
MLJ 1993 A Reply to Cohen's Book Review of Creating a Memory of Causal Relationships Michael J. Pazzani
AAAI 1993 Finding Accurate Frontiers: A Knowledge-Intensive Approach to Relational Learning Michael J. Pazzani, Clifford Brunk
IJCAI 1993 HYDRA: A Noise-Tolerant Relational Concept Learning Algorithm Kamal M. Ali, Michael J. Pazzani
MLJ 1993 Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning Michael J. Pazzani
MLJ 1992 A Framework for Average Case Analysis of Conjunctive Learning Algorithms Michael J. Pazzani, Wendy Sarrett
ICML 1992 Average Case Analysis of Learning Kappa-CNF Concepts Daniel S. Hirschberg, Michael J. Pazzani
MLJ 1992 The Utility of Knowledge in Inductive Learning Michael J. Pazzani, Dennis F. Kibler
ICML 1991 A Knowledge-Intensive Approach to Learning Relational Concepts Michael J. Pazzani, Clifford Brunk, Glenn Silverstein
ICML 1991 An Investigation of Noise-Tolerant Relational Concept Learning Algorithms Clifford Brunk, Michael J. Pazzani
ICML 1991 Constructive Induction of M-of-N Terms Patrick M. Murphy, Michael J. Pazzani
ICML 1991 Relational Clichés: Constraining Induction During Relational Learning Glenn Silverstein, Michael J. Pazzani
ICML 1990 Average Case Analysis of Conjunctive Learning Algorithms Michael J. Pazzani, Wendy Sarrett
IJCAI 1989 Detecting and Correcting Errors of Omission After Explanation-Based Learning Michael J. Pazzani
ICML 1989 Explanation-Based Learning with Week Domain Theories Michael J. Pazzani
ICML 1989 One-Sided Algorithms for Integrating Empirical and Explanation-Based Learning Wendy Sarrett, Michael J. Pazzani
ICML 1988 Integrated Learning with Incorrect and Incomplete Theories Michael J. Pazzani
IJCAI 1987 A Comparison of Concept Identification in Human Learning and Network Learning with the Generalized Delta Rule Michael J. Pazzani, Michael G. Dyer
IJCAI 1987 Using Prior Learning to Facilitate the Learning of New Causal Theories Michael J. Pazzani, Michael G. Dyer, Margot Flowers
AAAI 1986 Refining the Knowledge Base of a Diagnostic Expert System: An Application of Failure-Driven Learning Michael J. Pazzani
AAAI 1986 The Role of Prior Causal Theories in Generalization Michael J. Pazzani, Michael G. Dyer, Margot Flowers
AAAI 1983 Interactive Script Instantiation Michael J. Pazzani