ML Anthology
Authors
Search
About
Pazzani, Michael J.
44 publications
AAAI
2022
Expert-Informed, User-Centric Explanations for Machine Learning
Michael J. Pazzani
,
Severine Soltani
,
Robert Kaufman
,
Samson Qian
,
Albert Hsiao
ICML
2000
Characterizing Model Erros and Differences
Stephen D. Bay
,
Michael J. Pazzani
MLJ
1999
A Principal Components Approach to Combining Regression Estimates
Christopher J. Merz
,
Michael J. Pazzani
AAAI
1998
Knowledge-Based Avoidance of Drug-Resistant HIV Mutants
Richard H. Lathrop
,
Nicholas R. Steffen
,
Miriam P. Raphael
,
Sophia Deeds-Rubin
,
Michael J. Pazzani
,
Paul J. Cimoch
,
Darryl M. See
,
Jeremiah G. Tilles
ICML
1998
Learning Collaborative Information Filters
Daniel Billsus
,
Michael J. Pazzani
AISTATS
1997
Combining Neural Network Regression Estimates Using Principal Components
Christopher J. Merz
,
Michael J. Pazzani
MLJ
1997
Learning and Revising User Profiles: The Identification of Interesting Web Sites
Michael J. Pazzani
,
Daniel Billsus
MLJ
1997
On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss
Pedro M. Domingos
,
Michael J. Pazzani
ICML
1996
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
Pedro M. Domingos
,
Michael J. Pazzani
NeurIPS
1996
Combining Neural Network Regression Estimates with Regularized Linear Weights
Christopher J. Merz
,
Michael J. Pazzani
MLJ
1996
Error Reduction Through Learning Multiple Descriptions
Kamal M. Ali
,
Michael J. Pazzani
MLJ
1996
Review of "Inductive Logic Programming: Techniques and Applications" by Nada Lavrac, Saso Dzeroski
Michael J. Pazzani
AAAI
1996
Simple Bayesian Classifiers Do Not Assume Independence
Pedro M. Domingos
,
Michael J. Pazzani
AAAI
1996
Syskill & Webert: Identifying Interesting Web Sites
Michael J. Pazzani
,
Jack Muramatsu
,
Daniel Billsus
ICML
1995
A Lexical Based Semantic Bias for Theory Revision
Clifford Brunk
,
Michael J. Pazzani
ICML
1995
Learning Hierarchies from Ambiguous Natural Language Data
Takefumi Yamazaki
,
Michael J. Pazzani
,
Christopher J. Merz
AISTATS
1995
Learning Multiple Relational Rule-Based Models
Kamal M. Ali
,
Clifford Brunk
,
Michael J. Pazzani
AISTATS
1995
Searching for Dependencies in Bayesian Classifiers
Michael J. Pazzani
JAIR
1994
Exploring the Decision Forest: An Empirical Investigation of Occam's Razor in Decision Tree Induction
Patrick M. Murphy
,
Michael J. Pazzani
MLJ
1994
Guest Editor's Introduction
Michael J. Pazzani
ICML
1994
Reducing Misclassification Costs
Michael J. Pazzani
,
Christopher J. Merz
,
Patrick M. Murphy
,
Kamal M. Ali
,
Timothy Hume
,
Clifford Brunk
ICML
1994
Revision of Production System Rule-Bases
Patrick M. Murphy
,
Michael J. Pazzani
IJCAI
1993
A Methodology for Evaluating Theory Revision Systems: Results with Audrey II
James Wogulis
,
Michael J. Pazzani
MLJ
1993
A Reply to Cohen's Book Review of Creating a Memory of Causal Relationships
Michael J. Pazzani
AAAI
1993
Finding Accurate Frontiers: A Knowledge-Intensive Approach to Relational Learning
Michael J. Pazzani
,
Clifford Brunk
IJCAI
1993
HYDRA: A Noise-Tolerant Relational Concept Learning Algorithm
Kamal M. Ali
,
Michael J. Pazzani
MLJ
1993
Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning
Michael J. Pazzani
MLJ
1992
A Framework for Average Case Analysis of Conjunctive Learning Algorithms
Michael J. Pazzani
,
Wendy Sarrett
ICML
1992
Average Case Analysis of Learning Kappa-CNF Concepts
Daniel S. Hirschberg
,
Michael J. Pazzani
MLJ
1992
The Utility of Knowledge in Inductive Learning
Michael J. Pazzani
,
Dennis F. Kibler
ICML
1991
A Knowledge-Intensive Approach to Learning Relational Concepts
Michael J. Pazzani
,
Clifford Brunk
,
Glenn Silverstein
ICML
1991
An Investigation of Noise-Tolerant Relational Concept Learning Algorithms
Clifford Brunk
,
Michael J. Pazzani
ICML
1991
Constructive Induction of M-of-N Terms
Patrick M. Murphy
,
Michael J. Pazzani
ICML
1991
Relational Clichés: Constraining Induction During Relational Learning
Glenn Silverstein
,
Michael J. Pazzani
ICML
1990
Average Case Analysis of Conjunctive Learning Algorithms
Michael J. Pazzani
,
Wendy Sarrett
IJCAI
1989
Detecting and Correcting Errors of Omission After Explanation-Based Learning
Michael J. Pazzani
ICML
1989
Explanation-Based Learning with Week Domain Theories
Michael J. Pazzani
ICML
1989
One-Sided Algorithms for Integrating Empirical and Explanation-Based Learning
Wendy Sarrett
,
Michael J. Pazzani
ICML
1988
Integrated Learning with Incorrect and Incomplete Theories
Michael J. Pazzani
IJCAI
1987
A Comparison of Concept Identification in Human Learning and Network Learning with the Generalized Delta Rule
Michael J. Pazzani
,
Michael G. Dyer
IJCAI
1987
Using Prior Learning to Facilitate the Learning of New Causal Theories
Michael J. Pazzani
,
Michael G. Dyer
,
Margot Flowers
AAAI
1986
Refining the Knowledge Base of a Diagnostic Expert System: An Application of Failure-Driven Learning
Michael J. Pazzani
AAAI
1986
The Role of Prior Causal Theories in Generalization
Michael J. Pazzani
,
Michael G. Dyer
,
Margot Flowers
AAAI
1983
Interactive Script Instantiation
Michael J. Pazzani