ML Anthology
Authors
Search
About
Peters, Jonas
33 publications
JMLR
2025
Invariant Subspace Decomposition
Margherita Lazzaretto
,
Jonas Peters
,
Niklas Pfister
ICLRW
2025
Representation Learning for Distributional Perturbation Extrapolation
Julius von Kügelgen
,
Xinwei Shen
,
Jakob Ketterer
,
Nicolai Meinshausen
,
Jonas Peters
NeurIPS
2025
Transferring Causal Effects Using Proxies
Manuel Iglesias-Alonso
,
Felix Schur
,
Julius von Kügelgen
,
Jonas Peters
JMLR
2024
Effect-Invariant Mechanisms for Policy Generalization
Sorawit Saengkyongam
,
Niklas Pfister
,
Predrag Klasnja
,
Susan Murphy
,
Jonas Peters
JMLR
2024
Identifying Causal Effects Using Instrumental Time Series: Nuisance IV and Correcting for the past
Nikolaj Thams
,
Rikke Søndergaard
,
Sebastian Weichwald
,
Jonas Peters
ICLR
2024
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
,
Elan Rosenfeld
,
Pradeep Kumar Ravikumar
,
Niklas Pfister
,
Jonas Peters
NeurIPSW
2023
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
,
Elan Rosenfeld
,
Pradeep Kumar Ravikumar
,
Niklas Pfister
,
Jonas Peters
ICML
2022
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
,
Leonard Henckel
,
Niklas Pfister
,
Jonas Peters
UAI
2022
Identifiability of Sparse Causal Effects Using Instrumental Variables
Niklas Pfister
,
Jonas Peters
ICML
2022
Invariant Ancestry Search
Phillip B Mogensen
,
Nikolaj Thams
,
Jonas Peters
JMLR
2022
Structure Learning for Directed Trees
Martin E. Jakobsen
,
Rajen D. Shah
,
Peter Bühlmann
,
Jonas Peters
ICML
2021
Regularizing Towards Causal Invariance: Linear Models with Proxies
Michael Oberst
,
Nikolaj Thams
,
Jonas Peters
,
David Sontag
JMLR
2020
Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables
Rune Christiansen
,
Jonas Peters
JMLR
2018
Invariant Models for Causal Transfer Learning
Mateo Rojas-Carulla
,
Bernhard Schölkopf
,
Richard Turner
,
Jonas Peters
JMLR
2016
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks
Joris M. Mooij
,
Jonas Peters
,
Dominik Janzing
,
Jakob Zscheischler
,
Bernhard Schölkopf
ICML
2016
The Arrow of Time in Multivariate Time Series
Stefan Bauer
,
Bernhard Schölkopf
,
Jonas Peters
NeurIPS
2015
BACKSHIFT: Learning Causal Cyclic Graphs from Unknown Shift Interventions
Dominik Rothenhäusler
,
Christina Heinze
,
Jonas Peters
,
Nicolai Meinshausen
UAI
2015
Proceedings of the UAI 2015 Workshop on Advances in Causal Inference Co-Located with the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015), Amsterdam, the Netherlands, July 16, 2015
Ricardo Silva
,
Ilya Shpitser
,
Robin J. Evans
,
Jonas Peters
,
Tom Claassen
ICML
2015
Removing Systematic Errors for Exoplanet Search via Latent Causes
Bernhard Schölkopf
,
David Hogg
,
Dun Wang
,
Dan Foreman-Mackey
,
Dominik Janzing
,
Carl-Johann Simon-Gabriel
,
Jonas Peters
JMLR
2014
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
,
Joris M. Mooij
,
Dominik Janzing
,
Bernhard Schölkopf
UAI
2014
Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction Co-Located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), Quebec City, Canada, July 27, 2014
Joris M. Mooij
,
Dominik Janzing
,
Jonas Peters
,
Tom Claassen
,
Antti Hyttinen
NeurIPS
2013
Causal Inference on Time Series Using Restricted Structural Equation Models
Jonas Peters
,
Dominik Janzing
,
Bernhard Schölkopf
JMLR
2013
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising
Léon Bottou
,
Jonas Peters
,
Joaquin Quiñonero-Candela
,
Denis X. Charles
,
D. Max Chickering
,
Elon Portugaly
,
Dipankar Ray
,
Patrice Simard
,
Ed Snelson
UAI
2013
Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders
Eleni Sgouritsa
,
Dominik Janzing
,
Jonas Peters
,
Bernhard Schölkopf
ICML
2012
On Causal and Anticausal Learning
Bernhard Schölkopf
,
Dominik Janzing
,
Jonas Peters
,
Eleni Sgouritsa
,
Kun Zhang
,
Joris M. Mooij
UAI
2011
Detecting Low-Complexity Unobserved Causes
Dominik Janzing
,
Eleni Sgouritsa
,
Oliver Stegle
,
Jonas Peters
,
Bernhard Schölkopf
UAI
2011
Identifiability of Causal Graphs Using Functional Models
Jonas Peters
,
Joris M. Mooij
,
Dominik Janzing
,
Bernhard Schölkopf
UAI
2011
Kernel-Based Conditional Independence Test and Application in Causal Discovery
Kun Zhang
,
Jonas Peters
,
Dominik Janzing
,
Bernhard Schölkopf
AISTATS
2010
Identifying Cause and Effect on Discrete Data Using Additive Noise Models
Jonas Peters
,
Dominik Janzing
,
Bernhard Schölkopf
ICML
2009
Detecting the Direction of Causal Time Series
Jonas Peters
,
Dominik Janzing
,
Arthur Gretton
,
Bernhard Schölkopf
UAI
2009
Identifying Confounders Using Additive Noise Models
Dominik Janzing
,
Jonas Peters
,
Joris M. Mooij
,
Bernhard Schölkopf
ICML
2009
Regression by Dependence Minimization and Its Application to Causal Inference in Additive Noise Models
Joris M. Mooij
,
Dominik Janzing
,
Jonas Peters
,
Bernhard Schölkopf
NeurIPS
2008
Nonlinear Causal Discovery with Additive Noise Models
Patrik O. Hoyer
,
Dominik Janzing
,
Joris M. Mooij
,
Jonas Peters
,
Bernhard Schölkopf