Petersen, Brenden K

8 publications

AAAI 2025 DisCo-DSO: Coupling Discrete and Continuous Optimization for Efficient Generative Design in Hybrid Spaces Jacob F. Pettit, Chak Shing Lee, Jiachen Yang, Alex Ho, Daniel M. Faissol, Brenden K. Petersen, Mikel Landajuela
ICMLW 2024 Generative Design of Decision Tree Policies for Reinforcement Learning Jacob Pettit, Chak Shing Lee, Jiachen Yang, Alex Ho, Daniel Faissol, Brenden K. Petersen, Mikel Landajuela
NeurIPS 2022 A Unified Framework for Deep Symbolic Regression Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena, Terrell Mundhenk, Garrett Mulcahy, Brenden K Petersen
ICLR 2021 Deep Symbolic Regression: Recovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata Santiago, Soo Kyung Kim, Joanne Taery Kim
ICML 2021 Discovering Symbolic Policies with Deep Reinforcement Learning Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan Mundhenk, Jacob F Pettit, Daniel Faissol
ICMLW 2021 Incorporating Domain Knowledge into Neural-Guided Search via in Situ Priors and Constraints Brenden K Petersen, Claudio Santiago, Mikel Landajuela
NeurIPS 2021 Symbolic Regression via Deep Reinforcement Learning Enhanced Genetic Programming Seeding Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel Faissol, Brenden K Petersen
IJCAI 2020 An Interactive Visualization Platform for Deep Symbolic Regression Joanne Taery Kim, Sookyung Kim, Brenden K. Petersen