ML Anthology
Authors
Search
About
Peyré, Gabriel
53 publications
ICLR
2025
Towards Understanding the Universality of Transformers for Next-Token Prediction
Michael Eli Sander
,
Gabriel Peyré
ICML
2025
Transformative or Conservative? Conservation Laws for ResNets and Transformers
Sibylle Marcotte
,
Rémi Gribonval
,
Gabriel Peyré
ICLR
2025
Transformers Are Universal In-Context Learners
Takashi Furuya
,
Maarten V. de Hoop
,
Gabriel Peyré
AISTATS
2024
Enhancing Hypergradients Estimation: A Study of Preconditioning and Reparameterization
Zhenzhang Ye
,
Gabriel Peyré
,
Daniel Cremers
,
Pierre Ablin
ICML
2024
How Do Transformers Perform In-Context Autoregressive Learning ?
Michael Eli Sander
,
Raja Giryes
,
Taiji Suzuki
,
Mathieu Blondel
,
Gabriel Peyré
ICML
2024
How Smooth Is Attention?
Valérie Castin
,
Pierre Ablin
,
Gabriel Peyré
ICML
2024
Keep the Momentum: Conservation Laws Beyond Euclidean Gradient Flows
Sibylle Marcotte
,
Rémi Gribonval
,
Gabriel Peyré
ICLR
2024
Sparsistency for Inverse Optimal Transport
Francisco Andrade
,
Gabriel Peyré
,
Clarice Poon
AISTATS
2024
Structured Transforms Across Spaces with Cost-Regularized Optimal Transport
Othmane Sebbouh
,
Marco Cuturi
,
Gabriel Peyré
NeurIPS
2023
Abide by the Law and Follow the Flow: Conservation Laws for Gradient Flows
Sibylle Marcotte
,
Remi Gribonval
,
Gabriel Peyré
ICML
2023
Fast, Differentiable and Sparse Top-K: A Convex Analysis Perspective
Michael Eli Sander
,
Joan Puigcerver
,
Josip Djolonga
,
Gabriel Peyré
,
Mathieu Blondel
AISTATS
2022
Fast and Accurate Optimization on the Orthogonal Manifold Without Retraction
Pierre Ablin
,
Gabriel Peyré
AISTATS
2022
Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe
Thibault Sejourne
,
Francois-Xavier Vialard
,
Gabriel Peyré
AISTATS
2022
Randomized Stochastic Gradient Descent Ascent
Othmane Sebbouh
,
Marco Cuturi
,
Gabriel Peyré
AISTATS
2022
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
,
Pierre Ablin
,
Mathieu Blondel
,
Gabriel Peyré
NeurIPS
2022
Do Residual Neural Networks Discretize Neural Ordinary Differential Equations?
Michael Sander
,
Pierre Ablin
,
Gabriel Peyré
ICML
2022
Linear-Time Gromov Wasserstein Distances Using Low Rank Couplings and Costs
Meyer Scetbon
,
Gabriel Peyré
,
Marco Cuturi
NeurIPS
2022
On Global Convergence of ResNets: From Finite to Infinite Width Using Linear Parameterization
Raphaël Barboni
,
Gabriel Peyré
,
Francois-Xavier Vialard
ICML
2022
Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors
Geert-Jan Huizing
,
Laura Cantini
,
Gabriel Peyré
ICML
2021
Low-Rank Sinkhorn Factorization
Meyer Scetbon
,
Marco Cuturi
,
Gabriel Peyré
ICML
2021
Momentum Residual Neural Networks
Michael E. Sander
,
Pierre Ablin
,
Mathieu Blondel
,
Gabriel Peyré
NeurIPS
2021
Smooth Bilevel Programming for Sparse Regularization
Clarice Poon
,
Gabriel Peyré
NeurIPS
2021
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Sejourne
,
Francois-Xavier Vialard
,
Gabriel Peyré
NeurIPS
2020
Entropic Optimal Transport Between Unbalanced Gaussian Measures Has a Closed Form
Hicham Janati
,
Boris Muzellec
,
Gabriel Peyré
,
Marco Cuturi
NeurIPS
2020
Faster Wasserstein Distance Estimation with the Sinkhorn Divergence
Lénaïc Chizat
,
Pierre Roussillon
,
Flavien Léger
,
François-Xavier Vialard
,
Gabriel Peyré
NeurIPS
2020
Online Sinkhorn: Optimal Transport Distances from Sample Streams
Arthur Mensch
,
Gabriel Peyré
ICML
2020
Super-Efficiency of Automatic Differentiation for Functions Defined as a Minimum
Pierre Ablin
,
Gabriel Peyré
,
Thomas Moreau
COLT
2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
,
Gabriel Peyré
,
Jalal Fadili
,
Marcelo Pereyra
FnTML
2019
Computational Optimal Transport
Gabriel Peyré
,
Marco Cuturi
ICML
2019
Geometric Losses for Distributional Learning
Arthur Mensch
,
Mathieu Blondel
,
Gabriel Peyré
AISTATS
2019
Interpolating Between Optimal Transport and MMD Using Sinkhorn Divergences
Jean Feydy
,
Thibault Séjourné
,
François-Xavier Vialard
,
Shun-ichi Amari
,
Alain Trouve
,
Gabriel Peyré
AISTATS
2019
Model Consistency for Learning with Mirror-Stratifiable Regularizers
Jalal Fadili
,
Guillaume Garrigos
,
Jérôme Malick
,
Gabriel Peyré
AISTATS
2019
Sample Complexity of Sinkhorn Divergences
Aude Genevay
,
Lénaïc Chizat
,
Francis Bach
,
Marco Cuturi
,
Gabriel Peyré
ICML
2019
Stochastic Deep Networks
Gwendoline De Bie
,
Gabriel Peyré
,
Marco Cuturi
AISTATS
2019
Support Localization and the Fisher Metric for Off-the-Grid Sparse Regularization
Clarice Poon
,
Nicolas Keriven
,
Gabriel Peyré
NeurIPS
2019
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
,
Gabriel Peyré
AISTATS
2018
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
,
Gabriel Peyré
,
Marco Cuturi
NeurIPS
2016
A Multi-Step Inertial Forward-Backward Splitting Method for Non-Convex Optimization
Jingwei Liang
,
Jalal Fadili
,
Gabriel Peyré
AISTATS
2016
Fast Dictionary Learning with a Smoothed Wasserstein Loss
Antoine Rolet
,
Marco Cuturi
,
Gabriel Peyré
ICML
2016
Gromov-Wasserstein Averaging of Kernel and Distance Matrices
Gabriel Peyré
,
Marco Cuturi
,
Justin Solomon
NeurIPS
2016
Sparse Support Recovery with Non-Smooth Loss Functions
Kévin Degraux
,
Gabriel Peyré
,
Jalal Fadili
,
Laurent Jacques
NeurIPS
2016
Stochastic Optimization for Large-Scale Optimal Transport
Aude Genevay
,
Marco Cuturi
,
Gabriel Peyré
,
Francis Bach
NeurIPS
2015
Biologically Inspired Dynamic Textures for Probing Motion Perception
Jonathan Vacher
,
Andrew Isaac Meso
,
Laurent U Perrinet
,
Gabriel Peyré
NeurIPS
2014
Local Linear Convergence of Forward--Backward Under Partial Smoothness
Jingwei Liang
,
Jalal Fadili
,
Gabriel Peyré
ECCV
2010
Geodesic Shape Retrieval via Optimal Mass Transport
Julien Rabin
,
Gabriel Peyré
,
Laurent D. Cohen
CVPR
2010
On Growth and Formlets: Sparse Multi-Scale Coding of Planar Shape
Timothy D. Oleskiw
,
James H. Elder
,
Gabriel Peyré
CVPR
2009
Extraction of Tubular Structures over an Orientation Domain
Mickaël Péchaud
,
Renaud Keriven
,
Gabriel Peyré
ICCV
2009
Image Compression with Anisotropic Triangulations
Sébastien Bougleux
,
Gabriel Peyré
,
Laurent D. Cohen
CVPRW
2008
3D Shape Matching by Geodesic Eccentricity
Adrian Ion
,
Nicole M. Artner
,
Gabriel Peyré
,
Salvador B. López Mármol
,
Walter G. Kropatsch
,
Laurent D. Cohen
ECCV
2008
Anisotropic Geodesics for Perceptual Grouping and Domain Meshing
Sébastien Bougleux
,
Gabriel Peyré
,
Laurent D. Cohen
ECCV
2008
Non-Local Regularization of Inverse Problems
Gabriel Peyré
,
Sébastien Bougleux
,
Laurent D. Cohen
CVPR
2006
Landmark-Based Geodesic Computation for Heuristically Driven Path Planning
Gabriel Peyré
,
Laurent D. Cohen
CVPR
2005
Geodesic Computation for Adaptive Remeshing
Gabriel Peyré
,
Laurent D. Cohen