Phung, Dinh Q.

27 publications

MLJ 2022 Improving Kernel Online Learning with a Snapshot Memory Trung Le, Khanh Nguyen, Dinh Q. Phung
IJCAI 2021 Optimal Transport for Deep Generative Models: State of the Art and Research Challenges Viet Huynh, Dinh Q. Phung, He Zhao
IJCAI 2021 TIDOT: A Teacher Imitation Learning Approach for Domain Adaptation with Optimal Transport Tuan Nguyen, Trung Le, Nhan Dam, Quan Hung Tran, Truyen Nguyen, Dinh Q. Phung
IJCAI 2021 Topic Modelling Meets Deep Neural Networks: A Survey He Zhao, Dinh Q. Phung, Viet Huynh, Yuan Jin, Lan Du, Wray L. Buntine
IJCAI 2019 Learning Generative Adversarial Networks from Multiple Data Sources Trung Le, Quan Hoang, Hung Vu, Tu Dinh Nguyen, Hung Bui, Dinh Q. Phung
AAAI 2019 Robust Anomaly Detection in Videos Using Multilevel Representations Hung Vu, Tu Dinh Nguyen, Trung Le, Wei Luo, Dinh Q. Phung
IJCAI 2018 Geometric Enclosing Networks Trung Le, Hung Vu, Tu Dinh Nguyen, Dinh Q. Phung
ECML-PKDD 2018 Sqn2Vec: Learning Sequence Representation via Sequential Patterns with a Gap Constraint Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Q. Phung
AAAI 2017 Column Networks for Collective Classification Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh
IJCAI 2017 Discriminative Bayesian Nonparametric Clustering Vu Nguyen, Dinh Q. Phung, Trung Le, Hung Bui
IJCAI 2017 Large-Scale Online Kernel Learning with Random Feature Reparameterization Tu Dinh Nguyen, Trung Le, Hung Bui, Dinh Q. Phung
UAI 2017 Supervised Restricted Boltzmann Machines Tu Dinh Nguyen, Dinh Q. Phung, Viet Huynh, Trung Le
UAI 2016 Budgeted Semi-Supervised Support Vector Machine Trung Le, Phuong Duong, Mi Dinh, Tu Dinh Nguyen, Vu Nguyen, Dinh Q. Phung
MLJ 2016 Introduction: Special Issue of Selected Papers from ACML 2014 Hang Li, Dinh Q. Phung, Tru H. Cao, Tu Bao Ho, Zhi-Hua Zhou
AISTATS 2016 Nonparametric Budgeted Stochastic Gradient Descent Trung Le, Vu Nguyen, Tu Dinh Nguyen, Dinh Q. Phung
UAI 2016 Scalable Nonparametric Bayesian Multilevel Clustering Viet Huynh, Dinh Q. Phung, Svetha Venkatesh, XuanLong Nguyen, Matthew D. Hoffman, Hung Hai Bui
AAAI 2015 Tensor-Variate Restricted Boltzmann Machines Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh
WACV 2015 Visual Object Clustering via Mixed-Norm Regularization Xin Zhang, Duc-Son Pham, Dinh Q. Phung, Wanquan Liu, Budhaditya Saha, Svetha Venkatesh
AAAI 2012 A Sequential Decision Approach to Ordinal Preferences in Recommender Systems Truyen Tran, Dinh Q. Phung, Svetha Venkatesh
UAI 2012 A Slice Sampler for Restricted Hierarchical Beta Process with Applications to Shared Subspace Learning Sunil Kumar Gupta, Dinh Q. Phung, Svetha Venkatesh
CVPR 2012 Improved Subspace Clustering via Exploitation of Spatial Constraints Duc-Son Pham, Budhaditya Saha, Dinh Q. Phung, Svetha Venkatesh
UAI 2009 Ordinal Boltzmann Machines for Collaborative Filtering Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh
AAAI 2008 The Hidden Permutation Model and Location-Based Activity Recognition Hung Hai Bui, Dinh Q. Phung, Svetha Venkatesh, Hai Phan
CVPR 2006 AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh, Hung Hai Bui
CVPR 2005 Activity Recognition and Abnormality Detection with the Switching Hidden Semi-Markov Model Thi V. Duong, Hung Hai Bui, Dinh Q. Phung, Svetha Venkatesh
CVPR 2005 Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Models Nam Thanh Nguyen, Dinh Q. Phung, Svetha Venkatesh, Hung Bui
AAAI 2004 Learning Hierarchical Hidden Markov Models with General State Hierarchy Hung Hai Bui, Dinh Q. Phung, Svetha Venkatesh