Püschel, Markus

15 publications

UAI 2025 SpinSVAR: Estimating Structural Vector Autoregression Assuming Sparse Input Panagiotis Misiakos, Markus Püschel
CLeaR 2025 The CausalBench Challenge: A Machine Learning Contest for Gene Network Inference from Single-Cell Perturbation Data Mathieu Chevalley, Jacob Sackett-Sanders, Yusuf H Roohani, Pascal Notin, Artemy Bakulin, Dariusz Brzezinski, Kaiwen Deng, Yuanfang Guan, Justin Hong, Michael Ibrahim, Wojciech Kotlowski, Marcin Kowiel, Panagiotis Misiakos, Achille Nazaret, Markus Püschel, Chris Wendler, Arash Mehrjou, Patrick Schwab
NeurIPS 2024 Learning Bregman Divergences with Application to Robustness Mohamed-Hicham Leghettas, Markus Püschel
ICMLW 2023 Generating Efficient Kernels for Quantized Inference on Large Language Models Tommaso Pegolotti, Elias Frantar, Dan Alistarh, Markus Püschel
NeurIPS 2023 Learning DAGs from Data with Few Root Causes Panagiotis Misiakos, Chris Wendler, Markus Püschel
IJCAI 2022 Fourier Analysis-Based Iterative Combinatorial Auctions Jakob Weissteiner, Chris Wendler, Sven Seuken, Benjamin Lubin, Markus Püschel
ICLRW 2022 Learning Fourier-Sparse Functions on DAGs Bastian Seifert, Chris Wendler, Markus Püschel
AAAI 2021 Learning Set Functions That Are Sparse in Non-Orthogonal Fourier Bases Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel
NeurIPS 2019 Beyond the Single Neuron Convex Barrier for Neural Network Certification Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin Vechev
ICLR 2019 Boosting Robustness Certification of Neural Networks Gagandeep Singh, Timon Gehr, Markus Püschel, Martin Vechev
NeurIPS 2019 Powerset Convolutional Neural Networks Chris Wendler, Markus Püschel, Dan Alistarh
NeurIPS 2018 Fast and Effective Robustness Certification Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin Vechev
JMLR 2016 E-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem Marcela Zuluaga, Andreas Krause, Markus Püschel
ICML 2013 Active Learning for Multi-Objective Optimization Marcela Zuluaga, Guillaume Sergent, Andreas Krause, Markus Püschel
ICML 2009 Bandit-Based Optimization on Graphs with Application to Library Performance Tuning Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, Markus Püschel