ML Anthology
Authors
Search
About
Raghavan, Manish
17 publications
ICML
2025
Double Machine Learning for Causal Inference Under Shared-State Interference
Chris Hays
,
Manish Raghavan
NeurIPS
2025
Evaluating Multiple Models Using Labeled and Unlabeled Data
Divya M Shanmugam
,
Shuvom Sadhuka
,
Manish Raghavan
,
John Guttag
,
Bonnie Berger
,
Emma Pierson
NeurIPS
2025
Homogeneous Algorithms Can Reduce Competition in Personalized Pricing
Nathanael Jo
,
Ashia C. Wilson
,
Kathleen Creel
,
Manish Raghavan
ICLRW
2025
Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models
Vinith Menon Suriyakumar
,
Rohan Alur
,
Ayush Sekhari
,
Manish Raghavan
,
Ashia C. Wilson
NeurIPSW
2024
Fundamental Limits in the Search for Less Discriminatory Algorithms—and How to Avoid Them
Benjamin Laufer
,
Manish Raghavan
,
Solon Barocas
NeurIPSW
2024
Homogeneous Algorithms Can Reduce Competition in Personalized Pricing
Nathanael Jo
,
Kathleen Creel
,
Ashia C. Wilson
,
Manish Raghavan
NeurIPS
2024
Human Expertise in Algorithmic Prediction
Rohan Alur
,
Manish Raghavan
,
Devavrat Shah
ICLRW
2024
Multi-Model Evaluation with Labeled & Unlabeled Data
Divya M Shanmugam
,
Shuvom Sadhuka
,
Manish Raghavan
,
John Guttag
,
Bonnie Berger
,
Emma Pierson
NeurIPS
2023
Auditing for Human Expertise
Rohan Alur
,
Loren Laine
,
Darrick Li
,
Manish Raghavan
,
Devavrat Shah
,
Dennis Shung
ICMLW
2023
Auditing for Human Expertise
Rohan Alur
,
Loren Laine
,
Darrick Li
,
Manish Raghavan
,
Devavrat Shah
,
Dennis Shung
NeurIPSW
2023
Limitations of the “Four-Fifths Rule” and Statistical Parity Tests for Measuring Fairness
Manish Raghavan
,
Pauline Kim
NeurIPSW
2023
Outliers Exist: What Happens if You Are a Data-Driven Exception?
Sarah Cen
,
Manish Raghavan
UAI
2021
Stochastic Model for Sunk Cost Bias
Jon Kleinberg
,
Sigal Oren
,
Manish Raghavan
,
Nadav Sklar
AAAI
2020
Designing Evaluation Rules That Are Robust to Strategic Behavior
Jon M. Kleinberg
,
Manish Raghavan
ICML
2019
Hiring Under Uncertainty
Manish Purohit
,
Sreenivas Gollapudi
,
Manish Raghavan
COLT
2018
The Externalities of Exploration and How Data Diversity Helps Exploitation
Manish Raghavan
,
Aleksandrs Slivkins
,
Jennifer Wortman Vaughan
,
Zhiwei Steven Wu
NeurIPS
2017
On Fairness and Calibration
Geoff Pleiss
,
Manish Raghavan
,
Felix Wu
,
Jon Kleinberg
,
Kilian Q. Weinberger