Raiko, Tapani

18 publications

NeurIPS 2016 Ladder Variational Autoencoders Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, Ole Winther
ICML 2016 Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters Jelena Luketina, Mathias Berglund, Klaus Greff, Tapani Raiko
NeurIPS 2015 Bidirectional Recurrent Neural Networks as Generative Models Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo Kärkkäinen, Akos Vetek, Juha T Karhunen
ICLR 2015 Denoising Autoencoder with Modulated Lateral Connections Learns Invariant Representations of Natural Images Antti Rasmus, Tapani Raiko, Harri Valpola
NeurIPS 2015 Semi-Supervised Learning with Ladder Networks Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, Tapani Raiko
ICLR 2015 Techniques for Learning Binary Stochastic Feedforward Neural Networks Tapani Raiko, Mathias Berglund, Guillaume Alain, Laurent Dinh
NeurIPS 2014 Iterative Neural Autoregressive Distribution Estimator NADE-K Tapani Raiko, Yao Li, Kyunghyun Cho, Yoshua Bengio
ECML-PKDD 2014 Linear State-Space Model with Time-Varying Dynamics Jaakko Luttinen, Tapani Raiko, Alexander Ilin
ICLR 2014 Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence Mathias Berglund, Tapani Raiko
ICLR 2013 Pushing Stochastic Gradient Towards Second-Order Methods -- Backpropagation Learning with Transformations in Nonlinearities Tommi Vatanen, Tapani Raiko, Harri Valpola, Yann LeCun
AISTATS 2012 Deep Learning Made Easier by Linear Transformations in Perceptrons Tapani Raiko, Harri Valpola, Yann Lecun
ICML 2011 Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines KyungHyun Cho, Tapani Raiko, Alexander Ilin
JMLR 2010 Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, Juha Karhunen
JMLR 2010 Practical Approaches to Principal Component Analysis in the Presence of Missing Values Alexander Ilin, Tapani Raiko
JMLR 2007 Building Blocks for Variational Bayesian Learning of Latent Variable Models Tapani Raiko, Harri Valpola, Markus Harva, Juha Karhunen
JAIR 2006 Logical Hidden Markov Models Kristian Kersting, Luc De Raedt, Tapani Raiko
UAI 2005 "Say EM" for Selecting Probabilistic Models for Logical Sequences Kristian Kersting, Tapani Raiko
UAI 2005 Bayes Blocks: An Implementation of the Variational Bayesian Building Blocks Framework Markus Harva, Tapani Raiko, Antti Honkela, Harri Valpola, Juha Karhunen