ML Anthology
Authors
Search
About
Rainforth, Thomas
11 publications
NeurIPS
2023
Deep Stochastic Processes via Functional Markov Transition Operators
Jin Xu
,
Emilien Dupont
,
Kaspar Märtens
,
Thomas Rainforth
,
Yee Whye Teh
NeurIPS
2023
Trans-Dimensional Generative Modeling via Jump Diffusion Models
Andrew Campbell
,
William Harvey
,
Christian Weilbach
,
Valentin De Bortoli
,
Thomas Rainforth
,
Arnaud Doucet
NeurIPS
2022
A Continuous Time Framework for Discrete Denoising Models
Andrew Campbell
,
Joe Benton
,
Valentin De Bortoli
,
Thomas Rainforth
,
George Deligiannidis
,
Arnaud Doucet
NeurIPS
2022
Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation
Jannik Kossen
,
Sebastian Farquhar
,
Yarin Gal
,
Thomas Rainforth
NeurIPS
2022
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
,
Luke Ong
,
Thomas Rainforth
NeurIPS
2021
Group Equivariant Subsampling
Jin Xu
,
Hyunjik Kim
,
Thomas Rainforth
,
Yee W. Teh
NeurIPS
2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design Without Likelihoods
Desi R Ivanova
,
Adam Foster
,
Steven Kleinegesse
,
Michael U. Gutmann
,
Thomas Rainforth
NeurIPS
2021
Online Variational Filtering and Parameter Learning
Andrew Campbell
,
Yuyang Shi
,
Thomas Rainforth
,
Arnaud Doucet
NeurIPS
2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
,
Neil Band
,
Clare Lyle
,
Aidan N Gomez
,
Thomas Rainforth
,
Yarin Gal
NeurIPS
2019
On the Fairness of Disentangled Representations
Francesco Locatello
,
Gabriele Abbati
,
Thomas Rainforth
,
Stefan Bauer
,
Bernhard Schölkopf
,
Olivier Bachem
NeurIPS
2019
Variational Bayesian Optimal Experimental Design
Adam Foster
,
Martin Jankowiak
,
Elias Bingham
,
Paul Horsfall
,
Yee Whye Teh
,
Thomas Rainforth
,
Noah Goodman