ML Anthology
Authors
Search
About
Raj, Anant
28 publications
COLT
2025
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
,
Dheeraj Nagaraj
,
Anant Raj
TMLR
2025
Reweighting Improves Conditional Risk Bounds
Yikai Zhang
,
Jiahe Lin
,
Fengpei Li
,
Songzhu Zheng
,
Anant Raj
,
Anderson Schneider
,
Yuriy Nevmyvaka
ICML
2024
From Inverse Optimization to Feasibility to ERM
Saurabh Kumar Mishra
,
Anant Raj
,
Sharan Vaswani
TMLR
2024
Learning to Abstain from Uninformative Data
Yikai Zhang
,
Songzhu Zheng
,
Mina Dalirrooyfard
,
Pengxiang Wu
,
Anderson Schneider
,
Anant Raj
,
Yuriy Nevmyvaka
,
Chao Chen
NeurIPS
2024
Small Steps No More: Global Convergence of Stochastic Gradient Bandits for Arbitrary Learning Rates
Jincheng Mei
,
Bo Dai
,
Alekh Agarwal
,
Sharan Vaswani
,
Anant Raj
,
Csaba Szepesvári
,
Dale Schuurmans
ICML
2023
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Anant Raj
,
Lingjiong Zhu
,
Mert Gurbuzbalaban
,
Umut Simsekli
ALT
2023
Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least Squares
Anant Raj
,
Melih Barsbey
,
Mert Gurbuzbalaban
,
Lingjiong Zhu
,
Umut Şim\scekli
NeurIPS
2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
,
Umut Simsekli
,
Alessandro Rudi
AISTATS
2023
Explicit Regularization in Overparametrized Models via Noise Injection
Antonio Orvieto
,
Anant Raj
,
Hans Kersting
,
Francis Bach
NeurIPSW
2023
Practical Principled Policy Optimization for Finite MDPs
Michael Lu
,
Matin Aghaei
,
Anant Raj
,
Sharan Vaswani
NeurIPS
2023
Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent
Lingjiong Zhu
,
Mert Gurbuzbalaban
,
Anant Raj
,
Umut Simsekli
COLT
2023
Utilising the CLT Structure in Stochastic Gradient Based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
,
Dheeraj M. Nagaraj
,
Anant Raj
AISTATS
2022
Faster Rates, Adaptive Algorithms, and Finite-Time Bounds for Linear Composition Optimization and Gradient TD Learning
Anant Raj
,
Pooria Joulani
,
Andras Gyorgy
,
Csaba Szepesvari
TMLR
2022
Causal Feature Selection via Orthogonal Search
Ashkan Soleymani
,
Anant Raj
,
Stefan Bauer
,
Bernhard Schölkopf
,
Michel Besserve
ICML
2022
Convergence of Uncertainty Sampling for Active Learning
Anant Raj
,
Francis Bach
AISTATS
2021
Explicit Regularization of Stochastic Gradient Methods Through Duality
Anant Raj
,
Francis Bach
ICML
2020
A Simpler Approach to Accelerated Optimization: Iterative Averaging Meets Optimism
Pooria Joulani
,
Anant Raj
,
Andras Gyorgy
,
Csaba Szepesvari
NeurIPS
2020
Dual Instrumental Variable Regression
Krikamol Muandet
,
Arash Mehrjou
,
Si Kai Lee
,
Anant Raj
AISTATS
2020
Importance Sampling via Local Sensitivity
Anant Raj
,
Cameron Musco
,
Lester Mackey
NeurIPS
2020
Stochastic Stein Discrepancies
Jackson Gorham
,
Anant Raj
,
Lester W. Mackey
ECML-PKDD
2019
A Differentially Private Kernel Two-Sample Test
Anant Raj
,
Ho Chung Leon Law
,
Dino Sejdinovic
,
Mijung Park
AISTATS
2019
Sobolev Descent
Youssef Mroueh
,
Tom Sercu
,
Anant Raj
ICML
2018
On Matching Pursuit and Coordinate Descent
Francesco Locatello
,
Anant Raj
,
Sai Praneeth Karimireddy
,
Gunnar Raetsch
,
Bernhard Schölkopf
,
Sebastian Stich
,
Martin Jaggi
ICLR
2018
Sobolev GAN
Youssef Mroueh
,
Chun-Liang Li
,
Tom Sercu
,
Anant Raj
,
Yu Cheng
ICML
2017
Approximate Steepest Coordinate Descent
Sebastian U. Stich
,
Anant Raj
,
Martin Jaggi
AISTATS
2017
Local Group Invariant Representations via Orbit Embeddings
Anant Raj
,
Abhishek Kumar
,
Youssef Mroueh
,
Tom Fletcher
,
Bernhard Schölkopf
NeurIPS
2017
Safe Adaptive Importance Sampling
Sebastian U Stich
,
Anant Raj
,
Martin Jaggi
NeurIPS
2014
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
,
Bo Xie
,
Niao He
,
Yingyu Liang
,
Anant Raj
,
Maria-Florina F Balcan
,
Le Song