Rajendran, Goutham

14 publications

CLeaR 2024 An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis Goutham Rajendran, Patrik Reizinger, Wieland Brendel, Pradeep Kumar Ravikumar
NeurIPS 2024 Do LLMs Dream of Elephants (when Told Not to)? Latent Concept Association and Associative Memory in Transformers Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam
ICMLW 2024 Do LLMs Dream of Elephants (when Told Not to)? Latent Concept Association and Associative Memory in Transformers Yibo Jiang, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam
ICMLW 2024 Do LLMs Dream of Elephants (when Told Not to)? Latent Concept Association and Associative Memory in Transformers Yibo Jiang, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam
NeurIPSW 2024 Do LLMs Dream of Elephants (when Told Not to)? Latent Concept Association and Associative Memory in Transformers Yibo Jiang, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam
NeurIPS 2024 From Causal to Concept-Based Representation Learning Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar
NeurIPSW 2024 From Causal to Concept-Based Representation Learning Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, Pradeep Kumar Ravikumar
ICML 2024 On the Origins of Linear Representations in Large Language Models Yibo Jiang, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam, Victor Veitch
NeurIPS 2023 Learning Linear Causal Representations from Interventions Under General Nonlinear Mixing Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep K. Ravikumar
ICMLW 2023 Learning Linear Causal Representations from Interventions Under General Nonlinear Mixing Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Kumar Ravikumar
NeurIPS 2022 Identifiability of Deep Generative Models Without Auxiliary Information Bohdan Kivva, Goutham Rajendran, Pradeep K. Ravikumar, Bryon Aragam
NeurIPS 2022 Sub-Exponential Time Sum-of-Squares Lower Bounds for Principal Components Analysis Aaron Potechin, Goutham Rajendran
NeurIPS 2021 Learning Latent Causal Graphs via Mixture Oracles Bohdan Kivva, Goutham Rajendran, Pradeep K. Ravikumar, Bryon Aragam
NeurIPS 2021 Structure Learning in Polynomial Time: Greedy Algorithms, Bregman Information, and Exponential Families Goutham Rajendran, Bohdan Kivva, Ming Gao, Bryon Aragam