ML Anthology
Authors
Search
About
Rakitsch, Barbara
11 publications
TMLR
2025
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
,
Olaf Dünnbier
,
Marc Toussaint
,
Barbara Rakitsch
,
Christoph Zimmer
TMLR
2023
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
,
Barbara Rakitsch
,
Melih Kandemir
,
Jan Peters
AAAI
2023
Combining Slow and Fast: Complementary Filtering for Dynamics Learning
Katharina Ensinger
,
Sebastian Ziesche
,
Barbara Rakitsch
,
Michael Tiemann
,
Sebastian Trimpe
AISTATS
2022
Safe Active Learning for Multi-Output Gaussian Processes
Cen-You Li
,
Barbara Rakitsch
,
Christoph Zimmer
UAI
2022
Laplace Approximated Gaussian Process State-Space Models
Jakob Lindinger
,
Barbara Rakitsch
,
Christoph Lippert
NeurIPS
2022
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
,
Melih Kandemir
,
Barbara Rakitsch
L4DC
2022
Traversing Time with Multi-Resolution Gaussian Process State-Space Models
Krista Longi
,
Jakob Lindinger
,
Olaf Duennbier
,
Melih Kandemir
,
Arto Klami
,
Barbara Rakitsch
AISTATS
2021
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haußmann
,
Sebastian Gerwinn
,
Andreas Look
,
Barbara Rakitsch
,
Melih Kandemir
NeurIPS
2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
Jakob Lindinger
,
David Reeb
,
Christoph Lippert
,
Barbara Rakitsch
NeurIPS
2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
,
Andreas Doerr
,
Sebastian Gerwinn
,
Barbara Rakitsch
NeurIPS
2013
It Is All in the Noise: Efficient Multi-Task Gaussian Process Inference with Structured Residuals
Barbara Rakitsch
,
Christoph Lippert
,
Karsten Borgwardt
,
Oliver Stegle