Rätsch, Gunnar

72 publications

WACV 2025 Generalizable Single-Source Cross-Modality Medical Image Segmentation via Invariant Causal Mechanisms Boqi Chen, Yuanzhi Zhu, Yunke Ao, Sebastiano Caprara, Reto Sutter, Gunnar Rätsch, Ender Konukoglu, Anna Susmelj
ICLR 2025 Preference Elicitation for Offline Reinforcement Learning Alizée Pace, Bernhard Schölkopf, Gunnar Ratsch, Giorgia Ramponi
ICLR 2024 Delphic Offline Reinforcement Learning Under Nonidentifiable Hidden Confounding Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Ratsch, Guy Tennenholtz
CHIL 2024 Dynamic Survival Analysis for Early Event Prediction Hugo Yèche, Manuel Burger, Dinara Veshchezerova, Gunnar Ratsch
CHIL 2024 FAMEWS: A Fairness Auditing Tool for Medical Early-Warning Systems Marine Hoche, Olga Mineeva, Manuel Burger, Alessandro Blasimme, Gunnar Ratsch
ICMLW 2024 Identifying Biological Priors and Structure in Single-Cell Foundation Models Flavia Pedrocchi, Stefan Stark, Gunnar Ratsch, Amir Joudaki
ICML 2024 Improving Neural Additive Models with Bayesian Principles Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Ratsch, Vincent Fortuin
ICMLW 2024 Preference Elicitation for Offline Reinforcement Learning Alizée Pace, Bernhard Schölkopf, Gunnar Ratsch, Giorgia Ramponi
ICMLW 2024 Preference Elicitation for Offline Reinforcement Learning Alizée Pace, Bernhard Schölkopf, Gunnar Ratsch, Giorgia Ramponi
ICMLW 2024 Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information Fedor Sergeev, Paola Malsot, Gunnar Ratsch, Vincent Fortuin
NeurIPSW 2024 Towards Foundation Models for Critical Care Time Series Manuel Burger, Fedor Sergeev, Malte Londschien, Daphné Chopard, Hugo Yèche, Eike Christian Gerdes, Polina Leshetkina, Alexander Morgenroth, Zeynep Babür, Jasmina Bogojeska, Martin Faltys, Rita Kuznetsova, Gunnar Ratsch
NeurIPSW 2024 Towards Large-Scale Clinical Multi-Variate Time-Series Datasets Manuel Burger, Fedor Sergeev, Malte Londschien, Daphné Chopard, Hugo Yèche, Eike Christian Gerdes, Polina Leshetkina, Alexander Morgenroth, Zeynep Babür, Jasmina Bogojeska, Martin Faltys, Rita Kuznetsova, Gunnar Ratsch
ICLR 2024 Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Ratsch, Hadi Daneshmand
NeurIPSW 2024 Uncertainty-Penalized Direct Preference Optimization Sam Houliston, Alizée Pace, Alexander Immer, Gunnar Ratsch
NeurIPSW 2024 Uncertainty-Penalized Direct Preference Optimization Sam Houliston, Alizée Pace, Alexander Immer, Gunnar Ratsch
ICLRW 2023 Clinical Trajectory Representations for Clustering Haobo Li, Alizée Pace, Martin Faltys, Gunnar Ratsch
ICMLW 2023 Delphic Offline Reinforcement Learning Under Nonidentifiable Hidden Confounding Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Ratsch, Guy Tennenholtz
NeurIPSW 2023 Learning Genomic Sequence Representations Using Graph Neural Networks over De Bruijn Graphs Kacper Kapusniak, Manuel Burger, Gunnar Ratsch, Amir Joudaki
NeurIPSW 2023 Multi-V-Stain: Multiplexed Virtual Staining of Histopathology Whole-Slide Images Sonali Andani, Boqi Chen, Joanna Ficek-Pascual, Simon Heinke, Ruben Casanova, Bettina Sobottka, Bernd Bodenmiller, Viktor Koelzer, Gunnar Ratsch
ICML 2023 Stochastic Marginal Likelihood Gradients Using Neural Tangent Kernels Alexander Immer, Tycho F. A. Van Der Ouderaa, Mark Van Der Wilk, Gunnar Ratsch, Bernhard Schölkopf
ICML 2023 Temporal Label Smoothing for Early Event Prediction Hugo Yèche, Alizée Pace, Gunnar Ratsch, Rita Kuznetsova
AISTATS 2022 Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher, Alp Yurtsever
ICLR 2022 Bayesian Neural Network Priors Revisited Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch, Richard E Turner, Mark van der Wilk, Laurence Aitchison
NeurIPS 2022 Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations Alexander Immer, Tycho van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, Mark van der Wilk
NeurIPSW 2022 On the Importance of Clinical Notes in Multi-Modal Learning for EHR Data Severin Husmann, Hugo Yèche, Gunnar Ratsch, Rita Kuznetsova
AISTATS 2021 Scalable Gaussian Process Variational Autoencoders Metod Jazbec, Matt Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, Gunnar Rätsch
IJCAI 2021 Boosting Variational Inference with Locally Adaptive Step-Sizes Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch
ICML 2021 Neighborhood Contrastive Learning Applied to Online Patient Monitoring Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch
ICML 2021 Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Khan Mohammad Emtiyaz
AAAI 2020 A Commentary on the Unsupervised Learning of Disentangled Representations Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem
NeurIPSW 2020 Bayesian Neural Network Priors Revisited Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Ratsch, Richard E Turner, Mark van der Wilk, Laurence Aitchison
ICLR 2020 Disentangling Factors of Variations Using Few Labels Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem
ICLR 2019 SOM-VAE: Interpretable Discrete Representation Learning on Time Series Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch
AISTATS 2018 Boosting Variational Inference: An Optimization Perspective Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch
IJCAI 2018 Predicting Circulatory System Deterioration in Intensive Care Unit Patients Stephanie L. Hyland, Matthias Hüser, Xinrui Lyu, Martin Faltys, Tobias Merz, Gunnar Rätsch
AAAI 2017 Learning Unitary Operators with Help from U(n) Stephanie L. Hyland, Gunnar Rätsch
AAAI 2016 A Generative Model of Words and Relationships from Multiple Sources Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch
ICLR 2016 When Crowds Hold Privileges: Bayesian Unsupervised Representation Learning with Oracle Constraints Theofanis Karaletsos, Serge J. Belongie, Gunnar Rätsch
ECML-PKDD 2015 Opening the Black Box: Revealing Interpretable Sequence Motifs in Kernel-Based Learning Algorithms Marina M.-C. Vidovic, Nico Görnitz, Klaus-Robert Müller, Gunnar Rätsch, Marius Kloft
MLJ 2015 Probabilistic Clustering of Time-Evolving Distance Data Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch
ECML-PKDD 2012 Efficient Training of Graph-Regularized Multitask SVMs Christian Widmer, Marius Kloft, Nico Görnitz, Gunnar Rätsch
NeurIPS 2011 Hierarchical Multitask Structured Output Learning for Large-Scale Sequence Segmentation Nico Goernitz, Christian K. Widmer, Georg Zeller, Andre Kahles, Gunnar Rätsch, Sören Sonnenburg
MLOSS 2010 The SHOGUN Machine Learning Toolbox Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, Vojtěch Franc
ECML-PKDD 2009 The Feature Importance Ranking Measure Alexander Zien, Nicole Krämer, Sören Sonnenburg, Gunnar Rätsch
NeurIPS 2008 An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis Gabriele Schweikert, Gunnar Rätsch, Christian K. Widmer, Bernhard Schölkopf
NeurIPS 2007 Boosting Algorithms for Maximizing the Soft Margin Gunnar Rätsch, Manfred K. Warmuth, Karen A. Glocer
JMLR 2007 The Need for Open Source Software in Machine Learning Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal Vincent, Jason Weston, Robert Williamson
ECML-PKDD 2006 Graph Based Semi-Supervised Learning with Sharper Edges Hyunjung Shin, N. Jeremy Hill, Gunnar Rätsch
NeurIPS 2006 Large Scale Hidden Semi-Markov SVMs Gunnar Rätsch, Sören Sonnenburg
JMLR 2006 Large Scale Multiple Kernel Learning Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, Bernhard Schölkopf
ALT 2006 Solving Semi-Infinite Linear Programs Using Boosting-like Methods Gunnar Rätsch
ICML 2006 Totally Corrective Boosting Algorithms That Maximize the Margin Manfred K. Warmuth, Jun Liao, Gunnar Rätsch
NeurIPS 2005 A General and Efficient Multiple Kernel Learning Algorithm Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer
JMLR 2005 Efficient Margin Maximizing with Boosting Gunnar Rätsch, Manfred K. Warmuth
ICML 2005 Large Scale Genomic Sequence SVM Classifiers Sören Sonnenburg, Gunnar Rätsch, Bernhard Schölkopf
JMLR 2005 Matrix Exponentiated Gradient Updates for On-Line Learning and Bregman Projection Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth
NeurIPS 2004 Matrix Exponential Gradient Updates for On-Line Learning and Bregman Projection Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth
NeurIPS 2003 Image Reconstruction by Linear Programming Koji Tsuda, Gunnar Rätsch
NeCo 2002 A New Discriminative Kernel from Probabilistic Models Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller
NeurIPS 2002 Adapting Codes and Embeddings for Polychotomies Gunnar Rätsch, Sebastian Mika, Alex J. Smola
COLT 2002 Maximizing the Margin with Boosting Gunnar Rätsch, Manfred K. Warmuth
MLJ 2002 Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces Gunnar Rätsch, Ayhan Demiriz, Kristin P. Bennett
NeurIPS 2001 A New Discriminative Kernel from Probabilistic Models Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller
NeurIPS 2001 Active Learning in the Drug Discovery Process Manfred K. Warmuth, Gunnar Rätsch, Michael Mathieson, Jun Liao, Christian Lemmen
NeurIPS 2001 On the Convergence of Leveraging Gunnar Rätsch, Sebastian Mika, Manfred K. Warmuth
MLJ 2001 Soft Margins for AdaBoost Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
NeurIPS 2000 A Mathematical Programming Approach to the Kernel Fisher Algorithm Sebastian Mika, Gunnar Rätsch, Klaus-Robert Müller
COLT 2000 Barrier Boosting Gunnar Rätsch, Manfred K. Warmuth, Sebastian Mika, Takashi Onoda, Steven Lemm, Klaus-Robert Müller
NeurIPS 1999 Invariant Feature Extraction and Classification in Kernel Spaces Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
NeurIPS 1999 V-Arc: Ensemble Learning in the Presence of Outliers Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika
NeurIPS 1998 Kernel PCA and De-Noising in Feature Spaces Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch
NeurIPS 1998 Regularizing AdaBoost Gunnar Rätsch, Takashi Onoda, Klaus R. Müller