Razaviyayn, Meisam

44 publications

ICLR 2025 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
ICLR 2025 DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction Xinwei Zhang, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn, Vahab Mirrokni
JMLR 2025 Four Axiomatic Characterizations of the Integrated Gradients Attribution Method Daniel Lundstrom, Meisam Razaviyayn
NeurIPS 2025 Nested Learning: The Illusion of Deep Learning Architectures Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, Vahab Mirrokni
AISTATS 2025 On the Inherent Privacy of Zeroth-Order Projected Gradient Descent Devansh Gupta, Meisam Razaviyayn, Vatsal Sharan
NeurIPS 2025 PiKE: Adaptive Data Mixing for Large-Scale Multi-Task Learning Under Low Gradient Conflicts Zeman Li, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, Vahab Mirrokni
ICLRW 2025 PiKE: Adaptive Data Mixing for Multi-Task Learning Under Low Gradient Conflicts Zeman Li, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, Vahab Mirrokni
ICML 2025 Stochastic Control for Fine-Tuning Diffusion Models: Optimality, Regularity, and Convergence Yinbin Han, Meisam Razaviyayn, Renyuan Xu
ICML 2025 Synthetic Text Generation for Training Large Language Models via Gradient Matching Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, Baharan Mirzasoleiman
ICLRW 2024 Addax: Memory-Efficient Fine-Tuning of Language Models with a Combination of Forward-Backward and Forward-Only Passes Zeman Li, Xinwei Zhang, Meisam Razaviyayn
NeurIPSW 2024 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
NeurIPSW 2024 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
NeurIPS 2024 DOPPLER: Differentially Private Optimizers with Low-Pass Filter for Privacy Noise Reduction Xinwei Zhang, Zhiqi Bu, Mingyi Hong, Meisam Razaviyayn
NeurIPSW 2024 DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction Xinwei Zhang, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn, Vahab Mirrokni
ICLR 2024 F-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization Sina Baharlouei, Shivam Patel, Meisam Razaviyayn
ICLR 2024 Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization Yinbin Han, Meisam Razaviyayn, Renyuan Xu
NeurIPSW 2024 On the Inherent Privacy of Two Point Zeroth Order Projected Gradient Descent Devansh Gupta, Meisam Razaviyayn, Vatsal Sharan
ICML 2024 Optimal Differentially Private Model Training with Public Data Andrew Lowy, Zeman Li, Tianjian Huang, Meisam Razaviyayn
NeurIPSW 2023 $f$-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization Sina Baharlouei, Shivam Patel, Meisam Razaviyayn
ICML 2023 A Unifying Framework to the Analysis of Interaction Methods Using Synergy Functions Daniel Lundstrom, Meisam Razaviyayn
ICMLW 2023 A Unifying Framework to the Analysis of Interaction Methods Using Synergy Functions Daniel Lundstrom, Ali Ghafelebashi, Meisam Razaviyayn
AISTATS 2023 Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes Sina Baharlouei, Fatemeh Sheikholeslami, Meisam Razaviyayn, Zico Kolter
ICLR 2023 Private Federated Learning Without a Trusted Server: Optimal Algorithms for Convex Losses Andrew Lowy, Meisam Razaviyayn
AISTATS 2023 Private Non-Convex Federated Learning Without a Trusted Server Andrew Lowy, Ali Ghafelebashi, Meisam Razaviyayn
ALT 2023 Private Stochastic Optimization with Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses Andrew Lowy, Meisam Razaviyayn
TMLR 2023 RIFLE: Imputation and Robust Inference from Low Order Marginals Sina Baharlouei, Sze-Chuan Suen, Meisam Razaviyayn
TMLR 2023 Robustness Through Data Augmentation Loss Consistency Tianjian Huang, Shaunak Ashish Halbe, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami
ICMLW 2023 Robustness Through Data Augmentation Loss Consistency Tianjian Huang, Shaunak Halbe, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami
ICLR 2023 Stochastic Differentially Private and Fair Learning Andrew Lowy, Devansh Gupta, Meisam Razaviyayn
ICML 2022 A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions Daniel D Lundstrom, Tianjian Huang, Meisam Razaviyayn
TMLR 2022 A Stochastic Optimization Framework for Fair Risk Minimization Andrew Lowy, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, Ahmad Beirami
NeurIPSW 2022 A Stochastic Optimization Framework for Fair Risk Minimization Andrew Lowy, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, Ahmad Beirami
NeurIPSW 2022 Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes Sina Baharlouei, Fatemeh Sheikholeslami, Meisam Razaviyayn, J Zico Kolter
NeurIPSW 2022 Policy Gradient Finds Global Optimum of Nearly Linear-Quadratic Control Systems Yinbin Han, Meisam Razaviyayn, Renyuan Xu
NeurIPSW 2022 Private Stochastic Optimization with Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses & Extension to Non-Convex Andrew Lowy, Meisam Razaviyayn
AISTATS 2021 Alternating Direction Method of Multipliers for Quantization Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, Meisam Razaviyayn
NeurIPS 2020 Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, Mingyi Hong
ICLR 2020 Rényi Fair Inference Sina Baharlouei, Maher Nouiehed, Ahmad Beirami, Meisam Razaviyayn
NeurIPS 2019 Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason Lee, Meisam Razaviyayn
ICML 2018 Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solution for Nonconvex Distributed Optimization over Networks Mingyi Hong, Meisam Razaviyayn, Jason Lee
NeurIPS 2018 On the Convergence and Robustness of Training GANs with Regularized Optimal Transport Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, Jason Lee
NeurIPS 2017 On Optimal Generalizability in Parametric Learning Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh
NeurIPS 2015 Discrete Rényi Classifiers Meisam Razaviyayn, Farzan Farnia, David Tse
NeurIPS 2014 Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, Jong-Shi Pang