Reed, Scott

14 publications

CoRL 2025 DreamGen: Unlocking Generalization in Robot Learning Through Video World Models Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loïc Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
CoRL 2025 FLARE: Robot Learning with Implicit World Modeling Ruijie Zheng, Jing Wang, Scott Reed, Johan Bjorck, Yu Fang, Fengyuan Hu, Joel Jang, Kaushil Kundalia, Zongyu Lin, Loïc Magne, Avnish Narayan, You Liang Tan, Guanzhi Wang, Qi Wang, Jiannan Xiang, Yinzhen Xu, Seonghyeon Ye, Jan Kautz, Furong Huang, Yuke Zhu, Linxi Fan
ICML 2024 Genie: Generative Interactive Environments Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Maria Elisabeth Bechtle, Feryal Behbahani, Stephanie C.Y. Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando De Freitas, Satinder Singh, Tim Rocktäschel
TMLR 2024 RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Manon Devin, Alex X. Lee, Maria Bauza Villalonga, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo Fernandes Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Zolna, Scott Reed, Sergio Gómez Colmenarejo, Jonathan Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Thomas Rothörl, Jose Enrique Chen, Yusuf Aytar, David Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, Nicolas Heess
TMLR 2022 A Generalist Agent Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov, Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, Nando de Freitas
CoRL 2020 Task-Relevant Adversarial Imitation Learning Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gómez Colmenarejo, David Budden, Serkan Cabi, Misha Denil, Nando de Freitas, Ziyu Wang
ICLR 2019 Sample Efficient Adaptive Text-to-Speech Yutian Chen, Yannis Assael, Brendan Shillingford, David Budden, Scott Reed, Heiga Zen, Quan Wang, Luis C. Cobo, Andrew Trask, Ben Laurie, Caglar Gulcehre, Aäron van den Oord, Oriol Vinyals, Nando de Freitas
ICLR 2018 Few-Shot Autoregressive Density Estimation: Towards Learning to Learn Distributions Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Ali Eslami, Danilo Rezende, Oriol Vinyals, Nando de Freitas
ICML 2017 Parallel Multiscale Autoregressive Density Estimation Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, Nando Freitas
ICML 2016 Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee
CVPR 2016 Learning Deep Representations of Fine-Grained Visual Descriptions Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele
CVPR 2015 Evaluation of Output Embeddings for Fine-Grained Image Classification Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, Bernt Schiele
CVPR 2015 Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
ICML 2014 Learning to Disentangle Factors of Variation with Manifold Interaction Scott Reed, Kihyuk Sohn, Yuting Zhang, Honglak Lee